Impossible Geometry Problem

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 20

  • @jimlocke9320
    @jimlocke9320 5 місяців тому +4

    At 15:20, Math Booster has 2 solutions and discards the larger solution, because point P must be outside square ABCD. Actually, the second solution is for the case where P lies inside the square and is the given distances away from points A, B, and C.

  • @guyhoghton399
    @guyhoghton399 5 місяців тому +3

    Let _θ = ∠ABP_
    Using the cosine rule:
    In _ΔABP: 5² = x² + 3² - 6xcos(θ)_
    ⇒ _6xcos(θ) = x² - 16_
    S.B.S : _36x²cos²(θ) = x⁴ - 32x² + 256_ ... ①
    In _ΔBCP: 6² = x² + 3² - 6xcos(270° - θ)_
    ⇒ _6xsin(θ) = -x² + 27_
    S.B.S : _36x²sin²(θ) = x⁴ - 54x² + 729_ ... ②
    Adding ① and ②:
    _36x² = 2x⁴ - 86x² + 985_
    ⇒ _2x⁴ - 122x² + 985 = 0_
    ⇒ *area of **_ABCD = x² = ½(61 ± √1751)_*

  • @MarieAnne.
    @MarieAnne. 4 місяці тому

    s = side length of square. Using coordinates we get:
    A = (0,s), B = (s,s), C = (s,0), D = (0,0)
    P is point of intersection of circles centered at A, B, C with radii 5, 3, 6 respectively. These circles have equations:
    (1) x² + (y−s)² = 25
    (2) (x−s)² + (y−s)² = 9
    (3) (x−s)² + y² = 36
    (1) − (2) gives
    x² − (x² − 2xs + s²) = 25 − 9 → x = (16+s²)/(2s)
    (3) − (2) gives
    y² − (y² − 2ys + s²) = 36 − 9 → y = (27+s²)/(2s)
    Plugging values of x and y into (2) we get
    ((16+s²)/(2s) − s)² + ((27+s²)/(2s) − s)² = 9
    ((16−s²)/(2s))² + ((27−s²)/(2s))² = 9
    (256−32s²+s⁴)/(4s²) + (729−54s²+s⁴)/(4s²) = 9
    2s⁴ − 86s² + 985 = 36s²
    2s⁴ − 122s² + 985 = 0
    s² = (61+√1751)/2 ≈ 51.42 or
    s² = (61−√1751)/2 ≈ 9.58
    Since s < 5, then s² < 25. Therefore:
    Area(ABCD) = s² = *(61−√1751)/2 ≈ 9.58*

  • @jimleahy3858
    @jimleahy3858 5 місяців тому

    Note that sin

  • @michaeldoerr5810
    @michaeldoerr5810 5 місяців тому

    This definitely a problem that shows a subtle combination of algebra and geometric reasoning. Impossible means that it is easier than it looks. And lots of practice required in order to just comprehend how and why it is easier than it looks.

  • @ChandanRoy-sr6yu
    @ChandanRoy-sr6yu 5 місяців тому +1

    Sir I have a math problem But I am not able to solve it can you solve it but how I can send the problem to you?

  • @tieshanhuang2466
    @tieshanhuang2466 5 місяців тому

    May an analytic geometry approach. assume coordinates as P(x, y), B(0,0), A(-h,0), and C(0, -h) . three unknown numbers x/y/h in three equations of the Pythagorean theorem. similar solution but easier to think about.

  • @joseluishablutzelaceijas928
    @joseluishablutzelaceijas928 5 місяців тому

    Thank you for the nice problem and its solution. My solution is different, thus maybe worth sharing here: I tried to exploit the observation that the angles BAP, BCP and APC add up to 90° by rotating the triangle BCP by 90° clockwise around B, i.e. such that C moves to A and P to another point, call it P'. One then has the triangle APP', whose sides are all known as the triangle PBP' is rectangular and isosceles, meaning that |PP'| = 3*sqrt(2) and whose angle PAP' is equal to the sum of the angles BCP and BAP. Applying the cosine rule, one has for triangle PAP' that (3*sqrt(2))^2 = 5^2 + 6^2 - 2*5*6*cos([angle PAP']), which means that cos([angle PAP']) = 43/60. Now one can come back to triangle APC and apply the cosine rule again, meaning that |AC|^2 = 5^2 + 6^2 - 2*5*6*cos([angle APC]) = 5^2 + 6^2 - 2*5*6*sin([angle BAP]+[angle BCP]) = 61 - sqrt(17*103), the second equation being the expression of the observation that the angles BAP, BCP and APC add up to 90° and the third equation resulting from sin([angle PAP']) = sqrt(1 - (cos([angle PAP']))^2) = sqrt(17*103)/60. The area of the square ADCB is then equal to |AC|^2/2 = (61 - sqrt(17*103))/2.

  • @imetroangola17
    @imetroangola17 5 місяців тому

    Uma questão bem desafiante! Parabéns!!!

  • @zdrastvutye
    @zdrastvutye 5 місяців тому

    instigators trailer?
    i have written 4 equations with 4 unknown numbers and assumed
    that the common intersection point "P" is at 0;0:
    10 print "math booster-impossible geometry problem-square given by 3 distances from 1 point"
    20 l1=5:l2=3:l3=6:sw=l1^2/(l1+l2+l3)/10:xm1=sw:dim x(3),y(3):goto 60
    30 ym1=sqr(l1^2-xm1^2):p=-(xm1+ym1):q=((xm1+ym1)^2-l3^2)/2
    40 ym2=-p/2+sqr(abs(p*p/4-q)):xm2=xm1-ym2+ym1
    50 dgu1=(xm2/l2)^2:dgu2=(ym1/l2)^2:dg=dgu1+dgu2-1:return
    60 gosub 30
    70 dg1=dg:xm11=xm1:xm1=xm1+sw:xm12=xm1:gosub 30:if dg1*dg>0 then 70
    80 xm1=(xm11+xm12)/2:gosub 30:if dg1*dg>0 then xm11=xm1 else xm12=xm1
    90 if abs(dg)>1E-10 then 80
    100 print xm1;"%";ym1;"%";xm2;"%";ym2:la=xm1-xm2:print "laenge l=";la
    110 x(0)=xm1:y(0)=ym1:x(1)=xm2:y(1)=ym1:x(2)=xm2:y(2)=ym2:x(3)=xm1:y(3)=ym2
    120 xmin=(l1+l2+l3)/3:ymin=xmin:xmax=xmin:ymax=ymin
    130 for a=0 to 3:if x(a)xmax then xmax=x(a)
    150 if y(a)ymax then ymax=y(a)
    170 next a:if xmin>0 then xmin=0
    180 if ymin>0 then ymin=0
    190 if xmax=xmin or ymax=ymin then else 230
    200 if xmax=xmin then else 230
    210 mass=850/(ymax-ymin):goto 240
    220 mass=1200/(xmax-xmin):goto 240
    230 masx=1200/(xmax-xmin):masy=850/(ymax-ymin):if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @اقرء
    @اقرء 5 місяців тому

    Thank for watching

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 5 місяців тому

    Beautiful question!!!

  • @ShreyasKote
    @ShreyasKote 5 місяців тому +4

    Nice video keep it up

    • @Arandomguy1yl
      @Arandomguy1yl 5 місяців тому

      You didn't even watch the full video to see if it's nice or not, it's literally uploaded 3 minutes ago and you commented 1 min ago and possibly watched for 2 mins

    • @ShreyasKote
      @ShreyasKote 5 місяців тому

      ​​@@Arandomguy1ylI have done the answer in my head and that's why I watched it by speeding up by a factor of 10seconds

  • @josecastro6666
    @josecastro6666 5 місяців тому

    AREA SQUARE ABCD=(61-√1751)/2

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 5 місяців тому

    A≈9.578 (51.422) !!! 😁

  • @harrymatabal8448
    @harrymatabal8448 5 місяців тому +1

    If it's impossible then how you expect us to solve it. Are you from a mental home