Math Olympiad | Find area of the tiny Yellow circle | (Square) |

Поділитися
Вставка
  • Опубліковано 2 лют 2025

КОМЕНТАРІ • 52

  • @procash1968
    @procash1968 11 місяців тому +5

    Absolutely Brilliant

    • @PreMath
      @PreMath  11 місяців тому

      Glad to hear that!
      Thanks dear❤️

  • @zogzog6611
    @zogzog6611 11 місяців тому +1

    Clear, and crisply done! Thanks!

    • @PreMath
      @PreMath  11 місяців тому

      Glad to hear that!
      You are very welcome!
      Thanks ❤️

  • @wcdaniel7
    @wcdaniel7 11 місяців тому

    IMHO, Premath provides the most clearly explained solutions to geometry problems.

  • @michaelstahl1515
    @michaelstahl1515 11 місяців тому +1

    Great solution ! Respect , Sir !

    • @PreMath
      @PreMath  11 місяців тому

      Many thanks ❤️🌹

  • @mattsta1964
    @mattsta1964 10 місяців тому

    Great problem

  • @BritishBloke66
    @BritishBloke66 11 місяців тому +1

    This was a nice one!!

    • @PreMath
      @PreMath  11 місяців тому

      Thanks for the visit❤️

    • @Deepsikhacreation
      @Deepsikhacreation 11 місяців тому

      Brilliant....sir 🎉🎉

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 11 місяців тому +1

    Congratulations professor!!

    • @PreMath
      @PreMath  11 місяців тому

      Many many thanks❤️

  • @thomaswinston5142
    @thomaswinston5142 11 місяців тому

    Where does 72R come from sir? Is it 2 sides added?

  • @billycox475
    @billycox475 11 місяців тому +2

    Bravo!

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @jamestalbott4499
    @jamestalbott4499 11 місяців тому +1

    Thank you!

    • @PreMath
      @PreMath  11 місяців тому

      You are very welcome!
      Thanks ❤️🌹

  • @ybodoN
    @ybodoN 11 місяців тому +1

    Let the radii of the (quarter/semi/full) circles be _p_ for purple, _b_ for blue and _y_ for yellow.
    Then we can write the equation system _{p² + (p − b)² = (p + b)², (b − y)² + x² = (b + y)², (p − y)² + (p − x)² = (p + y)², p² = 1296}._
    The only solution with only positive numbers is _b_ = 9, _p_ = 36, _x_ = 12 and _y_ = 4.
    Therefore, the area of the yellow circle is π4² = 16π square units.

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

  • @raghvendrasingh1289
    @raghvendrasingh1289 3 місяці тому

    Nice problem sir
    relation between radii of these circles is
    1/√r = 1/√a+1/√b
    where 'r' is the radius of middle circle and 'a' , 'b' for other circles
    here a = 36 , b= 9
    1/√r = 1/6 +1/3 = 1/2
    r = 4

  • @Reddogovereasy
    @Reddogovereasy 11 місяців тому +1

    Good Problem

    • @PreMath
      @PreMath  11 місяців тому

      Glad to hear that!
      Thanks ❤️

  • @pralhadraochavan5179
    @pralhadraochavan5179 11 місяців тому

    Good morning sir

  • @Aymen-bt1ly
    @Aymen-bt1ly 11 місяців тому +1

    Thanks ❤❤

    • @PreMath
      @PreMath  11 місяців тому

      Always welcome🌹
      Thanks ❤️

  • @tombufford136
    @tombufford136 11 місяців тому

    At a quick glance: Denoting the Radii, RP, RB and RY for the Purple, Blue and Yellow circles. I took a look a comment below with a Pythagorean formula for the blue and purple circles. Trying this, Project Point E onto DC line, RB from D. Then RP^2 + (RP-RB)^2 = (RP+RB)^2. Then RP^2-2*RB + RB^2 + RP^2 = RP^2+2*RB +RB^2. Then RP^2 - 4*RB = 0. Then RB = 36/4 = 9. Projecting Point O onto lines AB and AD , Points F and G.. Then (RB+RY)^2 = AG^2 + (RB-RY)^2. Then (RP-AG)^2 +(RP-RY)^2 =(RP+RY)^2. Then (9+RY)^2 = AG^2 + (9-RY)^2, Equation (1) and (36-AG)^2 + (36-RY)^2 = (36 + RY)^2, Equation (2). 81 + 18*RY+RY^2 = AG^2 + 81 -18*RY + RY^2. Then 36 * RY = AG^2. Then 1296 -72 AG+AG^2 + 1296 - 72*RY + RY^2 = 1296 +72 * RY + RY^2. Then AG^2 - 72 * AG - 144*RY + 1296 = 0 . RY = AG^2/36 then AG^2 - 72 * AG - 144/36 * AG^2 + 1296 = 0. Then - 3 * AG^2 - 72 * AG + 1296 = 0. Then AG^2 + 24 AG - 432 = 0. Then ( AG + 36) * (AG -12) = 0. Then AG = 12 and RY = 144/36 = 4. The Yellow Radius is 4 and the yellow circle area is PI * 16 = 50.27 area units.

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @ybodoN
    @ybodoN 11 місяців тому +1

    So beautiful! And the icing on the cake is that BCE, EFO and CHO are all Pythagorean triangles 🤩

    • @PreMath
      @PreMath  11 місяців тому

      Yes they are!
      Thanks ❤️

    • @ybodoN
      @ybodoN 11 місяців тому

      Since BCE, EFO and CHO are all Pythagorean triangles, we can predict that the area of the triangle CEO will be an integer.
      (the legs of a primitive Pythagorean triangle always include an odd and an even number, so its area is always an integer)

  • @giuseppemalaguti435
    @giuseppemalaguti435 11 місяців тому +1

    Rp=36...arctg36/(36-R)=arccos(36-R)/(36+R).. applico tg..R=9...inoltre arccos(36-r)/(36+r)=arctg(36-2√Rr)/(36-r)..applico tg..risulta √144r=36-2√Rr...(R=9)..18√r=36...r=4..Ay=16π

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

  • @phungpham1725
    @phungpham1725 11 місяців тому

    I did it almost the same as you with a little bit different for the last part:
    sq OH= sq(36+r)-(sq36-r)= (36+r+36-r)(36+r-36+r)=72.2r=144r (1)
    sq OF = sq(9+r) -sq(9-r) =(9+r+9-r)(9+r-9+r)= 18 .2r = 36r (2)
    (1)/(2)-----> sq (OH/OF) = 144r/36r= sq12/sq6----> OH/OF= 2
    -----> OH/2=OF/1= (OH+OF/(2+1)= 36/3= 12
    OF= 12-----> from (2) : r= 144/36= 4
    Area of the yellow circle = 16 pi sq units

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 11 місяців тому

    We find the radius of the blue semi circle just as here: it is 9.
    Then in an adapted orthonormal of center D we have O(R, u) C(36;0) E(9;36) VectorOC(36-R;-u) Vector OE(9-R;36-u), R beeing the radius of the yellow circle.
    OC^2 = (R+36)^2, so 1296 -72.R +R^2 +u^2 = R^2 + 72.R +1296, we simplify: 144.R = u^2 and so u = 12.sqrt(R)
    OE^2 = (R+9)^2, so 81 -18.R +R^2 +1296 -72.u +u^2 = R^2 +18.R +81, we simplify: -36.R+1296 -72.u +u^2 = 0, then we replace u by 12.sqrt(R) and u^2 by 144.R
    We have then 108.R -864.sqrt(R) +1296 = 0, or R -8.sqrt(R) +12 = 0 (when simplified by 108), this is a second degree equation with deltaprime is (-4)^2 -12 = 4
    So: sqrt(R) = 4 +2 = 6 or sqrt(R) = 4 -2 = 2, and R =2 or R =6. We reject R = 6 (if R =6, then u = 12.sqrt(6) is about 29 and O should be inside the blue semi cercle)
    Finally R = 2 and the area of the yellow circle is 4.Pi

    • @marcgriselhubert3915
      @marcgriselhubert3915 11 місяців тому

      Sorry,, I made a fault.
      On line 6, please read: sqrt(R) = 6 or 2, then R = 36 or 4, and we reject R = 36 which is the length of the whole square, so R = 2, and the area of the yellow circle is 4.Pi

  • @StephenRayWesley
    @StephenRayWesley 11 місяців тому

    (270°+90°)=360° (36)^2=1296° (36)^2=1296° ,(1296°+1296°)=2592° (2592°-360°)=√2232 2^√11 2^√16 2^1 2^√4^√4 √2^1 √2^√2^√2^√2^2 √1^√1 √1^√1^√1 1^2 (x+1x-2)

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @lukeheatley4148
    @lukeheatley4148 11 місяців тому

    Is it just coincidence that the big radius is the product of the 2 smaller radio?

    • @petrdub8650
      @petrdub8650 11 місяців тому

      Yes, it is. If you make the whole picture two times larger, all radiuses would be twice as large => the product of the two smaller would be four times larger and therefore not equal the big radius.

    • @PreMath
      @PreMath  11 місяців тому

      Thanks ❤️

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip 11 місяців тому

    Clear and crispy don't thanks❤

  • @soli9mana-soli4953
    @soli9mana-soli4953 11 місяців тому +1

    16 pi with pythagorean tool 😁

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️

  • @wackojacko3962
    @wackojacko3962 11 місяців тому

    @ 13:41 ...Cuckoo for Cocoa Puffs! If that "Tiny little yellow Circle" was a Hydrogen Atom, bam! right off the top of my head @ 15:13 r=0.037nanometers. 🙂

  • @Motivational.sayari0
    @Motivational.sayari0 5 місяців тому

    R=9
    r=4
    36=9*4😂

  • @unknownidentity2846
    @unknownidentity2846 11 місяців тому +1

    Let's find the area of the yellow circle:
    .
    ..
    ...
    ....
    .....
    Since the blue semicircle and the purple quarter circle have exactly one point of intersection, this point (P) is located on the line connecting the centers of the circles (E and C). The same argument can be used to show that Q is located on CO and that T is located on EO. Now we apply the Pythagorean theorem to the right triangle BCE. With p being the radius of the pink quarter circle (and the side length of the square as well) and b being the radius of the blue semicircle we obtain:
    EC² = EB² + BC²
    (EP + CP)² = (AB − AE)² + BC²
    (b + p)² = (p − b)² + p²
    b² + 2*p*b + p² = p² − 2*p*b + b² + p²
    4*p*b = p²
    ⇒ b = p/4 = √A(ABCD)/4 = √1296/4 = 36/4 = 9
    A line throught point O, which is parallel to AD, may intersect AB at point R and CD at point S. Now we apply the Pythagorean theorem to the right triangles ERO and CSO. With y being the radius of the yellow circle we obtain:
    EO² = ER² + RO²
    (ET + OT)² = (AE − AR)² + RO²
    (b + y)² = (b − y)² + RO²
    b² + 2*b*y + y² = b² − 2*b*y + y² + RO²
    RO² = 4*b*y = 4*9*y = 36*y
    ⇒ RO = 6*√y
    CO² = CS² + SO²
    (CQ + OQ)² = (CD − DS)² + SO²
    (p + y)² = (p − y)² + SO²
    p² + 2*p*y + y² = p² − 2*p*y + y² + SO²
    SO² = 4*p*y = 4*36*y = 144*y
    ⇒ SO = 12*√y
    Since RO+SO=RS=AD=p, we can conclude:
    6*√y + 12*√y = 18*√y = p = 36
    ⇒ √y = 2
    ⇒ y = 4
    ⇒ A(yellow) = πy² = 16π
    Best regards from Germany

    • @PreMath
      @PreMath  11 місяців тому

      Excellent!
      Thanks ❤️