Can you find area of the triangle? | (Without Trigonometry) |

Поділитися
Вставка
  • Опубліковано 2 лют 2025

КОМЕНТАРІ • 73

  • @kaziummeruman524
    @kaziummeruman524 10 місяців тому +6

    LOVE THIS❤️‍🔥🥰

    • @PreMath
      @PreMath  10 місяців тому

      Excellent!
      Glad to hear that!
      Thanks ❤️

  • @mariopopesco
    @mariopopesco 10 місяців тому +6

    Another way without trigonometry :
    Draw bisector of angle BAC, AD.
    In triangle ACD , angle DAC is x, angle ADC is 2x. So triangle ADC is similar with triangle BAC.
    Triangle ABD has angles BAD and ABD equal with x, so is isosceles, so AD is equal with BD.
    Lets say AC is y and BD is a. So AD is a also.
    BD + CD is 12, so CD= 12- a
    From similar triangles we have :
    AD/AB = AC/BC = CD/AC, so a/10 = y/12 = 12-a/y > a = 10y/12, and in second equation we have y/12 = (12- 10y/12)/y -> y^2 = 144 - 10y, so y = 8 the only positive solution.
    We have all the sides, 8,10,12, so with Heron formula s = (8+10+12)/2 = 15
    Aria = sqrt (15*7*5*3) = 15 sqrt7

    • @PreMath
      @PreMath  10 місяців тому +1

      Excellent!
      Thanks ❤️

    • @gibbogle
      @gibbogle 10 місяців тому +1

      I did the same.

  • @JSSTyger
    @JSSTyger 10 місяців тому +2

    You are one of the best geometry instructors on UA-cam.

  • @ramanan36
    @ramanan36 10 місяців тому +15

    Sine rule: 10/sin(3x) = 12/sin(2x), expanding sin(2x) and sin(3x) and solving a quadratic in cos(x) gives cos(x) = either 3/4 or -1/3, the latter being impossible since 2x needs to be less than 180 degrees. Hence cos(x) = 3/4 and sin(x) = √7/4. Area = 1/2 c a sin B = 1/2 * 10 * 12 * √7/4 = 15√7.

    • @valentinebestofthevoiceall9289
      @valentinebestofthevoiceall9289 10 місяців тому +2

      Yes, I've chosen the same way. It's easier, i think.

    • @rudychan8792
      @rudychan8792 10 місяців тому

      Hey, this is my idea too^^
      Sinus Rules! More Effective!
      Cut this video from 14' to 7' 😉

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

    • @DanielNeedham2500
      @DanielNeedham2500 10 місяців тому

      How do you deduce the remaining angle is 3x to use the Sine rule?

    • @valentinebestofthevoiceall9289
      @valentinebestofthevoiceall9289 10 місяців тому

      @@DanielNeedham2500 sin (180° - a) = sin a

  • @Abby-hi4sf
    @Abby-hi4sf 10 місяців тому +3

    So great to see how to solve it without trig! Beautiful question and solution

    • @PreMath
      @PreMath  10 місяців тому

      Glad you enjoyed it!
      Thanks ❤️

  • @aura_beast2678
    @aura_beast2678 9 місяців тому +1

    This is an application of inmo question 1998 . you can prove that a²= b(c+b)
    144=10x + x²
    Just use quadratic formula to get x and appy herons formula
    Easier than your method

    • @溫文爾雅-q3f
      @溫文爾雅-q3f 9 місяців тому

      Can you write down the specific calculation process?

  • @michaelkouzmin281
    @michaelkouzmin281 10 місяців тому +2

    Another solution using trigonometry:
    1) Angle ACB = 180-3x;
    2) sin(180-3x)=sin(3x);
    3) 12/sin(2x)=10/sin(3x);
    4) sin(3x)/sin(2x)=10/12=5/6; => cos(x)=3/4 =>
    5) sin(x) = =sqrt(1-(cos(x))^2)= sqrt(1-(5/6)^2) = sqrt(7)/4
    6) AreaABC = 10*12/2*sin(x)= 60*sqrt(7)/4=15*sqrt(7) = approx 39.686 sq units.

    • @PreMath
      @PreMath  10 місяців тому +1

      Excellent!
      Thanks ❤️

  • @jimlocke9320
    @jimlocke9320 10 місяців тому +1

    At 1:00, there is an implication that side AB is the base. Actually, side BC or side AC can be treated as the base. However, PreMath's solution is dependent on using AB as the base, so that is the reason why he chose AB as the base. There are probably other solutions that use the other sides as the base. Also, it is possible that using line segments to divide ΔABC into 2 or more triangles would produce solutions where AB is not used as the base. For example, once PreMath has values for h and a, he could have used CP as a common base of triangles ΔACP and ΔBCP and computed and added their areas to equal the area of ΔABC.
    As for the trigonometric solutions provided in the comments, these are great, but the title states that trigonometry is not used.

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @gibbogle
    @gibbogle 10 місяців тому

    I drew a different line, bisecting CAB, meeting CB at D. Then triangles ABC and DAC are similar.
    Let w = AC, y = AD = BD, z = DC.
    z/w = w/12, i.e. z = (w^2)/12, and y/w = 10/12, i.e. y = (5/6)w
    But BC = BD + DC = y + z = (w^2)/12 + 5w/6 = 12, which gives w = 8
    With s = (triangle perimeter)/2 = (a+b+c)/2 where a,b,c are the side lengths
    area = sqrt(s(s-a)(s-b)(s-c))
    We have s = (12+10+8)/2 = 15 and area = sqrt(15*3*5*7) = sqrt(1575) = 15sqrt(7).

  • @phungcanhngo
    @phungcanhngo 7 місяців тому

    Thank you professor for amazing geometry.

  • @jamestalbott4499
    @jamestalbott4499 10 місяців тому +2

    Thank you!

    • @PreMath
      @PreMath  10 місяців тому

      You are very welcome!
      Thanks ❤️

  • @davidstaphnill9636
    @davidstaphnill9636 10 місяців тому

    Could you explain please why you replaced the 2 in the numerator with 1/4😊

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 місяців тому +1

    Teorema dei seni 10/sin3x=12/sin2x....risulta cosx=3/4...A=12*10*sinx/2=15√7

    • @PreMath
      @PreMath  10 місяців тому

      Excellent!
      Thanks ❤️

    • @溫文爾雅-q3f
      @溫文爾雅-q3f 9 місяців тому

      Can you write down the specific calculation process?

  • @alster724
    @alster724 10 місяців тому

    After seeing the quadratic equation, I did basic factoring instead of quadratic formula

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 5 місяців тому

    Using Heron's formula my answer is 40√2sq.unit

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 5 місяців тому

    I was wrong in taking a=18instead of 8.Corrected myself.Thanks.

  • @bigm383
    @bigm383 10 місяців тому +3

    Quite convoluted but strangely satisfying!

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 10 місяців тому +1

    Можно без дополнительных построений. Применяя теорему синусов и синус тройного угла, находит тригонометрическую функцию x. Удобнее cos( x)=0.75. Зная cos( x) находим sin( x), высоту, проведённую к стороне AB.

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

    • @溫文爾雅-q3f
      @溫文爾雅-q3f 9 місяців тому

      Can you write down the specific calculation process?

    • @ОльгаСоломашенко-ь6ы
      @ОльгаСоломашенко-ь6ы 9 місяців тому +1

      @@溫文爾雅-q3f BC/sin(2x)=AB/sin(180-3x), 12/sin(2x)=10/sin(3x), we use the reduction formula. sin(3x)=3sin(x)-4sin^3(x). Substitute 12/(2sin(x)*cos(x))=10/(3sin(x)-4sin^3(x)). We reduce everything that is possible and get 3/cos(x)=5/(3-4sin^2(x)). We replace the sine with the cosine on the right side of the equality using the basic trigonometric identity sin^1(x)+cos^2(x)=1. 3/cos(x)=5/(3-4+4cos^2(x)). 3/cos(x)=5/(4cos^2(x)-1). After the transformations, we obtain the quadratic equation 12cos^2(x)-5cos(x) -3=0. This equation has 2 roots, one of which is negative, which cannot be. cjs(x)=0.75. We find sin(x)=√1-0,75:2=√7/4 and the area according to the formula.

    • @溫文爾雅-q3f
      @溫文爾雅-q3f 9 місяців тому

      ​@@ОльгаСоломашенко-ь6ы
      Great, this is what I needed, thank you!

    • @ОльгаСоломашенко-ь6ы
      @ОльгаСоломашенко-ь6ы 9 місяців тому +1

      @@溫文爾雅-q3f According to the sine theorem CB/sin(2x)=AB/sin(180-3x), 12/sin(2x)=10/sin(3x), we use the reduction formula. sin(3x)=3sin(x)-4sin^3(3x). 12/(2sin(x)*cos(x))=10/(3sin(x)-4sin^3(x). We're cutting everything we can. 3/cos(x)=5/(3-4sin^2(x)). We use the basic trigonometric identity sin^2(x)+cos^2(x)=1. 3/cox(x)=5/(3-4sin^2(x)). After the transformations, we get a quadratic equation with respect to cos(x), which has two roots, one of which is negative, which is impossible. So cos(x)=0.75. sin(x)=√1-(0,75)^2=√7/4. S=0.5*12*10 * sin(x)=15√7.

  • @professorrogeriocesar
    @professorrogeriocesar 10 місяців тому +1

    Problema maravilhoso. Muito obrigado. Fiz de outra forma, traçando a bissetriz relativa ao ângulo A. Muito obrigado e parabéns!!

    • @PreMath
      @PreMath  10 місяців тому

      You are very welcome!
      Thanks ❤️

  • @joeschmo622
    @joeschmo622 10 місяців тому +1

    Magic!

    • @PreMath
      @PreMath  10 місяців тому

      Glad to hear that!
      Thanks ❤️

  • @sergiocasavecchia5819
    @sergiocasavecchia5819 6 місяців тому

    Who grants that point T really exists ? And if angle CAB is greater than 90° ?
    You should demonsrrate first that 2x < 90° (without using trigonomerry ...)

  • @sorourhashemi3249
    @sorourhashemi3249 10 місяців тому +1

    How do you know the angle CTA is 2x?

    • @johnbrennan3372
      @johnbrennan3372 10 місяців тому +1

      By construction he made it equal to 2x

  • @himadrikhanra7463
    @himadrikhanra7463 3 місяці тому

    30 square unit ?
    Angles are in arithmetic progression

  • @marcgriselhubert3915
    @marcgriselhubert3915 10 місяців тому +2

    The area of the triangle is (1/2).BA.BC.sin(x) = (1/2).10.12.sin(x) = 60.sin(x). Now let(s calculate sin(x)
    We have: sin(x)/AC = sin(2.x)/12 = sin(180° -3.x)/10 in triangle ABC, so 10.sin(2.x) = 12.sin(3.x), or 5.sin(2.x) = 6.sin(3.x)
    Then: 5.2.sin(x).cos(x) = 6.(3.sin(x) - 4.(sin(x))^3) We divide by sin(x) which is non equal to 0: 10.cos(x) =18 - 24.(sin(x))^2
    We simplify by 2 and replace (cos(x))^2 by 1 - (sin(x))^2, we obtain: 5.cos(x) = 9 -12.(1 -(cos(x)^2) or: 12.(cos(x)^2 -5.cos(x) -3 =0
    Delta = (-5)^2 -4.12.(-3) = 25 +144 = 169 = (13)^2, so cos(x) = (5 -13)/24 = -1/3 which is rejected as negative, or cos(x) = (5 +13)/24 = 18/24 = 3/4
    Then (cos(x)) = 9/16 and (sin(x))^2 = 1 - (9/16) = 7/16 and sin(x) = sqrt(7)/4 (as sin(x)>0, 0

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

    • @marcgriselhubert3915
      @marcgriselhubert3915 10 місяців тому +1

      At the last line, please naturaly read : .... Area = 60.sin(x) = 15.sqrt(7).

  • @wackojacko3962
    @wackojacko3962 10 місяців тому

    One needs to have a measured sense of reason to solve this problem. 🙂

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks ❤️

  • @CloudBushyMath
    @CloudBushyMath 10 місяців тому

    Interesting

    • @PreMath
      @PreMath  10 місяців тому

      Glad to hear that!
      Thanks ❤️

  • @prossvay8744
    @prossvay8744 10 місяців тому +4

    Area of the triangle=1/2(12)(10)sin(41.41)=39.69 square units.❤❤❤ Thanks sir.

    • @PreMath
      @PreMath  10 місяців тому

      Great job!
      You are very welcome!
      Thanks ❤️

    • @溫文爾雅-q3f
      @溫文爾雅-q3f 9 місяців тому

      Can you write down the specific calculation process?

  • @StephenRayWesley
    @StephenRayWesley 10 місяців тому

    (10)^2=100 (12)^2=144 2x(45°)=90°x. 3x(15°)=45°x 3(15°)=45°x {90°x+45°x+45°x}=180°x^3 b{100+144}=244 ,{180°x^3-244}=0√76°x^3 4^√19x^2 4^√19^1x^3 √4^√1^√1x^3√ 2^2x^3 √2^1^2x^3 √1^√1^2x^3 23 (x+2x-3)

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️

  • @pralhadraochavan5179
    @pralhadraochavan5179 10 місяців тому +1

    Good night sir

    • @PreMath
      @PreMath  10 місяців тому

      Same to you❤️

  • @unknownidentity2846
    @unknownidentity2846 10 місяців тому +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let's introduce a point D on BC such that ∠BAD=x. Then we have two triangles ABD and ACD with:
    ∠BAD = x
    ∠ABD = x
    ∠ADB = 180° − ∠BAD − ∠ABD = 180° − 2x
    ∠CAD = x
    ∠ADC = 180° − ∠ADB = 180° − (180° − 2x) = 2x
    ∠ACD = 180° − ∠CAD − ∠ADC = 180° − x − 2x = 180° − 3x
    Therefore ABD is an isosceles triangle (AD=BD) and the triangles ABC and ACD are similar:
    AB/AD = AC/CD = BC/AC
    AC/CD = BC/AC ⇒ AC² = CD*BC
    AB/AD = AC/CD
    AB²/AD² = AC²/CD²
    AB²/AD² = CD*BC/CD²
    AB²/AD² = BC/CD
    AB²/AD² = BC/(BC − BD)
    AB²/AD² = BC/(BC − AD)
    10²/AD² = 12/(12 − AD)
    100/AD² = 12/(12 − AD)
    25/AD² = 3/(12 − AD)
    300 − 25*AD = 3*AD²
    3*AD² + 25*AD − 300 = 0
    AD
    = [−25 ± √(25² + 4*3*300)] / (2*3)
    = [−25 ± √(625 + 3600)] / 6
    = (−25 ± √4225) / 6
    = (−25 ± 65) / 6
    Obviously only one of the two solutions is useful:
    AD = (−25 + 65)/6 = 40/6 = 20/3
    Since ABD is an isosceles triangle, it can be divided into two congruent right triangles. So we can conclude:
    cos(x) = (AB/2)/AD = (10/2)/(20/3) = 5*3/20 = 3/4
    sin(x) = √(1 − cos²(x)) = √(1 − 9/16) = √(7/16) = √7/4
    Finally we are able to calculate the area of the triangle ABC:
    A(ABC) = (1/2)*AB*BC*sin(x) = (1/2)*10*12*√7/4 = 15√7
    Best regards from Germany

    • @unknownidentity2846
      @unknownidentity2846 10 місяців тому

      I also made a comment with an alternative solution to the problem you published yesterday. I'm looking forward to your opinion.

    • @PreMath
      @PreMath  10 місяців тому

      Excellent!
      Thanks ❤️

  • @rudychan8792
    @rudychan8792 10 місяців тому +2

    Looks Complicated, Messy, Too Long.
    Sinus Rules, Please:
    sin(3x) ÷ 10 = sin2x ÷ 12
    sin3x / sin2x = 10/12 ...
    do the rest, you will get
    12p"-5p -3 = 0 ; p = cos x = 3/4
    Turn into sin x = √7 ÷ 4
    Area = (1/2)•10•12•(√7/4) = 15√7 = 39,7 sq units
    Much-much Easier\Practical.
    ---
    Anyway, i'll give you thumbsup, anyway^
    "Longtime no see"
    Dec'23 today Mar'24 😉 👍

    • @PreMath
      @PreMath  10 місяців тому +1

      Good to see you again 😀
      Thanks ❤️

  • @adept7474
    @adept7474 10 місяців тому +2

    СК || АВ. АК - bisector ∠ВАС. СН ⟂ АВ. АСКВ - Isosceles trapezoid. СК = АС = ВК = х, АН = y.
    х² - y² = 12² - (10-y)², х = 10 - 2y. (10 - 2y)² - y² = 12² - (10 - y)². y² - 15y + 14 = 0. y = 1. СН = √(12² - 9²) =
    √63. S(АВС) = (10√63)/2 = 15√7.

    • @SkinnerRobot
      @SkinnerRobot 10 місяців тому

      I really like how you let AC = 10 - 2y , and the rest is so easy.
      Bravo! Thumbs up.

    • @adept7474
      @adept7474 10 місяців тому

      @@SkinnerRobot Thanks

    • @PreMath
      @PreMath  10 місяців тому

      Thanks ❤️