Can you find area of the Purple shaded region? | (Rectangle inscribed in a circle) |

Поділитися
Вставка
  • Опубліковано 8 лют 2025
  • Learn how to find the area of the Purple shaded region in the circle. Yellow rectangle is inscribed in a circle. Yellow rectangle area and perimeter are given as 264 and 68 respectively. Important Geometry skills are also explained: area of the rectangle formula; Pythagorean theorem; area of the circle formula. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find area of t...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find area of the Purple shaded region? | (Rectangle inscribed in a circle) | #math #maths
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindPurpleArea #Rectangle #Circle #Radius #Diamater #GeometryMath #PythagoreanTheorem #AreaOfTriangle #CongruentTriangles
    #MathOlympiad #SimilarTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #ExteriorAngleTheorem #PythagoreanTheorem #IsoscelesTriangles #AreaOfTriangleFormula #AuxiliaryLines
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #AreaOfTriangles #CompetitiveExams #CompetitiveExam
    #MathematicalOlympiad #OlympiadMathematics #LinearFunction #TrigonometricRatios
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Olympiad Question
    Find Area of the Shaded Triangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    Exterior Angle Theorem
    pythagorean theorem
    Isosceles Triangles
    Area of the Triangle Formula
    Competitive exams
    Competitive exam
    Find Area of the Triangle without Trigonometry
    Find Area of the Triangle
    Auxiliary lines method
    Pythagorean Theorem
    Square
    Diagonal
    Congruent Triangles
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

КОМЕНТАРІ • 48

  • @cauabrito7284
    @cauabrito7284 Рік тому +6

    Hello from Brazil, 👋 Love ur content!!

    • @PreMath
      @PreMath  Рік тому +1

      Glad you like them!
      Thanks ❤️

  • @Gkuljian
    @Gkuljian Рік тому +4

    Two Premath videos. What a glorious morning!

    • @PreMath
      @PreMath  Рік тому

      Glad you like them!
      Thanks dear❤️

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l Рік тому +2

    Very nice sharing sir❤❤❤

    • @PreMath
      @PreMath  Рік тому

      Thanks for visiting❤️

  • @vintran9777
    @vintran9777 Рік тому +2

    This one is pretty easy compared to your other Premath videos. Thanks for the brain teaser.👍

  • @thewolfdoctor761
    @thewolfdoctor761 Рік тому +3

    Let a = rectangle width and b = rectangle length. So 2a+2b = 68 and a*b= 264. That's 2 equations with 2 unknowns. Solve and get a = 12 and b = 22. Diagonal of rectangle is diameter. Use Pyth. theorem to get diameter (2*radius), i.e 12^2 + 22^2 = (2R) ^ 2. so 628=4R^2. R^2 = 157. Purple = 157*PI - 264

  • @MrPaulc222
    @MrPaulc222 Рік тому +2

    Yes, I did it in a similar way. Not identical but mostly the same components. Thank you.

  • @wackojacko3962
    @wackojacko3962 Рік тому +3

    @ 3:22 , I absolutely love it! 🙂

    • @PreMath
      @PreMath  Рік тому

      Glad to hear that!
      Thanks ❤️

  • @ChuzzleFriends
    @ChuzzleFriends Рік тому +2

    Purple Region Area = Circle O Area - Rectangle ABCD Area
    The rectangle area was already given as 264 square units. To find the circle area, we need to find its radius.
    Label the length of the rectangle l and the width w. Therefore, lw = 264 and 2(l + w) = 68.
    Draw a diagonal of rectangle ABCD. (I chose segment BD) This is the diameter of circle O. So, l² + w² = d² by definition of a diagonal.
    Divide both sides of the second equation by 2. Thus, l + w = 34.
    (l + w)² = 34²
    l² + 2lw + w² = 1156
    d² + 2(264) = 1156
    d² + 528 = 1156
    d² = 628
    d = √628
    = √(2 * 2 * 157)
    = 2√157
    Since d is the diameter of circle O, the radius will be half its length. Thus, the radius BO is √157 units.
    Now, we are ready to find the circle area.
    A = πr²
    = π(√157)²
    = 157π
    Purple Region Area = 157π - 264
    So, the area of the purple region is 157π - 264 square units (exact), or about 229.23 square units (approximation).

  • @papricank2006
    @papricank2006 Рік тому +1

    Always think your channel give me great time

  • @johnjones8580
    @johnjones8580 Рік тому +1

    At 6:14, I found it easier to first simplify the measure of the diameter, then divide by 2 for the radius. Otherwise, the method used here is essentially how I solved it.
    Also, had this figure been to scale, a=22, b=12.

  • @Abby-hi4sf
    @Abby-hi4sf Рік тому

    Great short cut! and neat lesson

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip Рік тому +1

    Thanks for sharing❤

  • @jamestalbott4499
    @jamestalbott4499 Рік тому +1

    Thank you!

  • @quigonkenny
    @quigonkenny Рік тому +3

    Area = x•y = 264
    Perimeter = 2(x+y) = 68
    Form two numbers x and y from all the factors of 264 such that x+y = 68/2 = 34
    Prime factors of 264: 2•2•2•3•11
    24+11 = 35 -- X
    8 + 33 = 41 -- X
    12 + 22 = 34 -- ✓
    Therefore AB and CD are 12 and BC and DA are 22. Drop a perpendicular to point P from O to bisect AB. AP and BP are 6 and OP is 11.
    Triangle ∆APO:
    a² + b² = c²
    r² = 6² + 11² = 36 + 121 = 157
    A = πr² - 264 = 157π - 264 ≈ 229.23

  • @mathbynisharsir5586
    @mathbynisharsir5586 Рік тому +3

    Very Very useful video sir 🎉🎉🎉🎉🎉

    • @PreMath
      @PreMath  Рік тому

      Thanks and welcome❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 Рік тому +1

    That's very easy.
    l and L beeing the dimensions of the rectangle, we have lL= 264 and l + L= 34, so l and L are the solutions of the equation x^2 - 34x + 264 = 0
    The reduct delta is 17^2 - 264 = 25, so the solutions are l = 17 - 5 = 12 and L = 17 + 5 = 22.
    Now if R is the radius of the circle, the Pythagore gives that R^2 = (12 / 2)^2 + (22 / 2)^2 = 121 + 36 = 157
    Finally the purple area is 157. Pi - 264.

  • @ybodoN
    @ybodoN Рік тому +3

    The area of a circle is also πd²/4 where d is the diameter of the circle. Thus, we can get directly 628/4 😉

  • @santiagoarosam430
    @santiagoarosam430 Рік тому +1

    2a+2b=68→ a+b=34 ; a*b=264→ b=264/a→ a+(264/a)=34→ a²-34a+264=0→ a=12 ; b=22 → 12²+22²=AC=4r²→ r²=157 → Área púrpura =157π -264 =229.23
    Gracias y saludos.

  • @prossvay8744
    @prossvay8744 Рік тому +3

    Purple shaded area=157π-264=229.23 square units. ❤❤❤ Thanks.

  • @sergioaiex3966
    @sergioaiex3966 Рік тому

    Solution:
    Area = Base . Height
    A = b . h
    264 = b . h
    b . h = 264. Eq. 1
    Perimeter = 2 Base + 2 Height
    68 = 2b + 2h
    2 (b + h) = 68
    b + h = 34. Eq. 2
    b . h = 264
    b + h = 34
    (34 - h) . h = 264
    34h - h² - 264 = 0 (.-1)
    h² - 34h + 264 = 0
    h = 34 ± √[(-34)² - 4.1.264] / 2
    h = 34 ± √100 / 2
    h = 34 + 10 / 2
    h = 22 rejected
    h = 34 - 10 / 2
    *h = 12 accepted*
    *b = 22*
    r² = (11)² + (6)²
    r² = 121 + 36
    *r² = 157*
    Area Purple Region = Area Circle - Area Rectangle
    APR = πr² - b.h
    APR = 157π - (22.12)
    *APR = 157π - 264 Square Units*
    *==============*
    *APR = 229,23 Square Units*
    *=============*

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 Рік тому

    Thanks Sir
    That’s very nice
    With glades
    ❤❤❤❤❤❤

  • @AmitSharma-cg9gf
    @AmitSharma-cg9gf Рік тому +1

    I did it the long way by chord intersect theorem

    • @PreMath
      @PreMath  Рік тому

      Thanks dear ❤️

  • @raya.pawley3563
    @raya.pawley3563 Рік тому

    Thank you

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Рік тому

    Yes I can!!
    Solving this System of Equations:
    x*y = 264
    2x + 2y = 68 2(x + y) = 68 x + y = 34
    So:
    x = 22 and y = 12 or,
    x = 12 and y = 22
    Finding the value of the Diagonal (D):
    12^2 + 22^2 = D^2
    144 + 484 = D^2
    628 = D^2
    D = sqrt(628)
    D ~ 25,06 lu
    So, the Radius (R) is equal to: sqrt(628) / 2
    Area of the Circle (A):
    A = Pi * R^2
    A = Pi * 628 / 4
    A = Pi * 157
    A ~ 493,23 su
    Finding the Purple Shaded Area (P):
    P = 493,23 - 264 ~ 229,23 su
    Answer: The Purple Shaded Area is equal to app. 229,23 su

  • @sergioaiex3966
    @sergioaiex3966 Рік тому

    Hello from Rezende RJ - Brazil

  • @billcame6991
    @billcame6991 Рік тому

    I used the quadratic formula to figure out the width and height of the rectangle. I knew the sum of the squares of the width and height would be 4 times the radius squared.

  • @AmirgabYT2185
    @AmirgabYT2185 Рік тому +1

    157π-264≈228,98≈229😊

  • @rajkarannishad7673
    @rajkarannishad7673 Рік тому +1

    228

  • @FrancescoPalmas-bs5dl
    @FrancescoPalmas-bs5dl Рік тому +1

    Nice video but today's problem was a little too easy

    • @PreMath
      @PreMath  Рік тому

      Thanks ❤️

    • @User-jr7vf
      @User-jr7vf 11 місяців тому

      Yea, I did it in like 30 seconds

  • @축복이-x6u
    @축복이-x6u Рік тому

    asnwer=150

  • @BrainSprintAgile
    @BrainSprintAgile Рік тому

    It is not 157*PI ..it is 132**PI...

  • @unknownidentity2846
    @unknownidentity2846 Рік тому

    Let's do some math:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the side lengths x and y of the rectangle from the given values for the area A and the perimeter P:
    A = x*y = 264
    P = 2*(x + y) = 68
    x + y = 34
    x + 264/x = 34
    x² + 264 = 34x
    x² − 34x + 264 = 0
    x = 17 ± √(17² − 264) = 17 ± √(289 − 264) = 17 ± √25 = 17 ± 5
    Finally we have the side lengths x=22 and y=12 or x=12 and y=22. The length of the diagonals of the rectangle corresponds to the length of the circles diameter. So it follows:
    d² = x² + y² = 22² + 12² = 484 + 144 = 628
    r² = d²/4 = 628/4 = 157
    A(purple) = A(circle) − A(rectangle) = πr² − A = 157π − 264 ≈ 229.23
    Best regards from Germany

  • @robertlynch7520
    @robertlynch7520 Рік тому

    I thought to myself … what are the factors of
       264 = (1 2 3 4 6 8 11 12 22 24 33 44 66 88 132 264) ... or in multiplicative pairs
       1, 264
       2, 132
       3, 88
       4, 66
       6, 44
       8, 33
       11, 24
       12, 22
    Then knowing that the perimeter is 68, which is (2𝒂 ⊕ 2𝒃), it means the (𝒂 + 𝒃) = 34. Well, what in the pairs above equals 34? ... 12 and 22.
    Sure enough (12 × 22) = 264 square units, so the rectangle is satisfied. And
    2 × (12 + 22) = 68, so the perimeter is equally satisfied.
    The radius is √((𝒂 ÷ 2)² + (𝒃 ÷ 2)²), which evaluates to 12.529964
    OK, Then the area of the whole circle is A = π𝒓² = 3.141593 × 12.529964² = 493.2300
    … then just subtract out the 264 area of the rectangle, leaving
       Purple = 493.2300 - 264.0000 = 229.2300 u²
    Which is the same as what your solution provided!
    By a rather different route.
    Yay.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅