Hi and thank you for this video, Let's say the ward algorithm is completed and using the CCC criterion we find out that K=5. Since ward method acts by merging clusters (starting by assigning one cluster to each observation) then at some point there must have been k-clusters. After K-1 repetitions of merging we are left we 1 cluster, at this point the ward algorithm has done its job and K-mean is initiated. My question is: Does the K-mean algorithm to create the final number of K-clusters takes into accout the K clusters that were created K-1 repetitions before the end of the ward method or does is randomly chooses K observations as seeds for the final K clusters Thank you
very easy to understand, thanks for sharing
Hi and thank you for this video,
Let's say the ward algorithm is completed and using the CCC criterion we find out that K=5. Since ward method acts by merging clusters (starting by assigning one cluster to each observation) then at some point there must have been k-clusters.
After K-1 repetitions of merging we are left we 1 cluster, at this point the ward algorithm has done its job and K-mean is initiated.
My question is: Does the K-mean algorithm to create the final number of K-clusters takes into accout the K clusters that were created K-1 repetitions before the end of the ward method or does is randomly chooses K observations as seeds for the final K clusters
Thank you