TMUA: Integration Problem

Поділитися
Вставка
  • Опубліковано 8 січ 2025

КОМЕНТАРІ •

  • @qqqalo
    @qqqalo 4 дні тому

    The integral starts at 0, and floor(0) is 0, so you have to add an extra 1.
    Another way of thinking about its final value is that it would just be 99 1s in binary, which is 2^100 - 1.

    • @qqqalo
      @qqqalo 4 дні тому +2

      Nevermind. The width of the bar at x=0 would be 0, so there's no area under that part. So the answer 2^100 -2 is correct.

    • @KogularajK.
      @KogularajK. 4 дні тому

      Thats ceil not floor, so the video is crct..

    • @JPiMaths
      @JPiMaths  4 дні тому

      @qqqalo nice job for spotting the mistake!

  • @AdamJackson-kf9eg
    @AdamJackson-kf9eg 4 дні тому

    Getting nervous for the January sitting, I've heard so many people saying how hard the last one was!

    • @JPiMaths
      @JPiMaths  4 дні тому

      @AdamJackson-kf9eg yeah, I heard the first sitting was rough! What are you doing over the next few days to prepare?

    • @AdamJackson-kf9eg
      @AdamJackson-kf9eg 3 дні тому

      ​@@JPiMathstrying not to overdo it haha! I feel like mindset / confidence with unfamilar problems is most important now. :)

  • @Nishaan478
    @Nishaan478 5 днів тому

    Can you do some more tmua problems !

    • @JPiMaths
      @JPiMaths  4 дні тому

      @@Nishaan478 which ones in particular?

  • @ronallanbaran1891
    @ronallanbaran1891 3 дні тому

    I'm stupid at math but can't believe i actually solved it...i guess if I change the ceiling function to the floor function, the answer would change to 2^0 + 2^1 + ... 2^98 ? not sure though

  • @OpPhilo03
    @OpPhilo03 4 дні тому

    0 to 1 = 0 so start form 2^0+2^1+...

    • @KogularajK.
      @KogularajK. 4 дні тому

      Thats ceil not floor so the video is crct..