AN ALGEBRAIC EXTRAVAGANZA! The integral 1/(x^3+1)

Поділитися
Вставка
  • Опубліковано 30 січ 2025

КОМЕНТАРІ • 140

  • @Rsharlan3
    @Rsharlan3 6 років тому +168

    Me: I got it! I got it!
    P.F.: "plus some arbitrary constant."
    Me: @#%&!!!!

    • @whatever-td1nh
      @whatever-td1nh 4 роки тому +1

      In France we don't need to add the arbitrary constant, strange

    • @latslarsson2001
      @latslarsson2001 2 роки тому +2

      @@whatever-td1nh well you should need it, or you don't solve for all the primitive functions

    • @whatever-td1nh
      @whatever-td1nh 2 роки тому

      @Egad well that seems so obvious that we only write the simplest one (choosing the constant to be zero), because we're not asked to solve for the set of primitives but for a primitive. Also it's simply redundant, especially when it comes to partial derivatives (heat equation, wave propagation equation, or just differential calculus in math)

  • @stydras3380
    @stydras3380 7 років тому +127

    Blah & Bleh. My two new favourite variables xD

  • @grmmhp
    @grmmhp 6 років тому +112

    integration is an art

    • @sagarmajumder7806
      @sagarmajumder7806 2 роки тому +1

      So that it's geometrical interpretation is area under the curve and two absissa😁😁😁

    • @kerbodynamicx472
      @kerbodynamicx472 2 роки тому +3

      Integration is a sorcery

    • @henrykirona
      @henrykirona 2 роки тому

      Lora mera

    • @finmat95
      @finmat95 Рік тому

      Is a nightmare.

  • @martinepstein9826
    @martinepstein9826 7 років тому +66

    Nice! One suggestion: At 7:40 you have the integral of (x - 2)/((x - 1/2)^2 + 3/4) and then you split the numerator into x and -2. But it's easy to see that you will have to make a substitution for x - 1/2 later, so you can save some work by instead splitting the numerator into x - 1/2 and -3/2.

    • @ralfbodemann1542
      @ralfbodemann1542 7 років тому +4

      I agree, Martin Epstein. flammable math's method is way too cumbersome.

    • @alexselby802
      @alexselby802 Рік тому

      This works but it's faster to multiply the integrand by 2 before completing the square, and put 1/2 on the outside. This allows us to break the numerator into 2x-1 and -3, which lets us split the fraction into two with those numerators, then integrate the (2x-1)/x^2-x+1 via ln, and complete the square with -3/x^2-x+1 to get an easy arctan

  • @MrPeponee
    @MrPeponee 6 років тому +7

    This has become one of my favorite videos. I spent like two hours doing that integral by other methods and you have taught me a nice one. Thank you.

  • @AlexandreRibeiroXRV7
    @AlexandreRibeiroXRV7 4 роки тому +12

    Feels so weird seeing Papa Flammy not being as flashy as he is these days on camera... goes to show how far he's gone as a UA-camr.

  • @FarisSkt
    @FarisSkt 6 років тому +16

    For the Partial Fractions, you could just substitute x=-1 and that would remove (Bx+C)(x+1) and leaves us with 1=3A

    • @MG-hi9sh
      @MG-hi9sh 5 років тому +2

      Yeah, I did that. It makes that part a whole lot easier. Tbh, I recently discovered the difference of two cubes formula and I can prove it too, so I factorised, went to partial fractions, and solved it thereafter. I do love this integral. It is an interesting one.

  • @vorpalinferno9711
    @vorpalinferno9711 6 років тому +22

    That integral is SAVAGE!

  • @martinzone8153
    @martinzone8153 7 років тому +63

    so differentiate the answer and see if fits ;)

    • @YaamFel
      @YaamFel 6 років тому +54

      Left as an exercise to the viewer

  • @singfredabotane1430
    @singfredabotane1430 5 років тому +1

    Impressed with how you explain partial fraction decomposition.Find it really helpful.

  • @engjayah
    @engjayah 4 роки тому

    At 2:09 you can directly substitute x = -1 to find the value of A = 1/3
    The main idea is to directly find the value of (Bx + C) as follows as finding individual terms are not required:
    Substitute at 2:09 x2 - x = -1 from which we get Bx + C = 1/(x + 1); then multiply both num and deno by x + k
    Now to find the value of k equate the coefficient of x term of x2 - x and x term of x2 + (k+1)x + k from which k = -2
    and Bx + C = -(x-2)/3

  • @MrRyanroberson1
    @MrRyanroberson1 7 років тому +23

    I like the not-complex-analysis version. Though I must ask if you could/have integrate(d) ln(x)? And if you already have, instead ln(1/ln(x))

  • @markgross9582
    @markgross9582 5 років тому +1

    I remember doing this one as a definite integral from 1 to infinity. After the fraction decomposition, I did a bunch of weird splitting and manipulating of the integral, in which I ended up with two integrals that were divergent, plus some other stuff. However, the two divergent integrals could be combined to make something convergent; I also needed to do a little l’hopital, but I got there in the long run.

  • @asriel522
    @asriel522 2 роки тому +2

    The absolute value sign of the(1/6)ln|x²-x+1| in the final answer is no need to be added as x²-x+1is always positive

  • @johnmcguiness3519
    @johnmcguiness3519 5 років тому +3

    By the way, Euler found a general solution for that integral (from 0 to inf) i.e. for Int 1 / (x^n + 1) = π / (n sin (π/n) ), where n > 0, so your boi from 0 to inf evaluates to 2π / 3√3.

  • @aryanks2167
    @aryanks2167 4 роки тому +1

    All I would do differently was from 6:40 , instead of completing the square - i would manipulate the numerator to be 2x-1 so u-sub can be used ; which would leave you with just a constant on the numerator from where you could do completing the square +trig sub

  • @nachusa7278
    @nachusa7278 6 років тому +3

    You’re a real life superhero

  • @English-yx9ts
    @English-yx9ts 2 роки тому

    I'm Japanese student. I took this topic when I'm senior in high school. At the time, I have been studying it, using textbook in mathematics. The textbook is written about the way to solve the mathematics problem, combining various field of mathematics such as trigonometric function, the Integral and so on.

  • @aggelosgekas3322
    @aggelosgekas3322 5 років тому +4

    I just integrated this today and this came up at my recommended (UA-cam spying on me probably lol). It is faster to integrate it if at the second fraction after pfd you set u=denominator, then du=(2x-1)dx. Then you can break the numerator to 1/2*(2x-1 -3). Split it into 1/2(2x-1) and - 3/2. After that you split the integral and you have integral of 1/u du and another one which evaluates to a single arctan. Also, in the end inside the second ln the expression is always positive so you can remove the absolute value

  • @jamesrowland3724
    @jamesrowland3724 6 років тому +9

    At 6:30 let u=x^2-x to get rid of that nasty boi. Still left with a hot piece tho.

  • @petarrepac9516
    @petarrepac9516 4 роки тому +1

    You really saved me man, thanks a lot!
    Greetings from a savage engineer :)

  • @aaronrovinsky11
    @aaronrovinsky11 6 років тому +3

    this is beautiful

  • @GreenTornado
    @GreenTornado 7 років тому +6

    Ich habe dich abonniert! 😊
    Grüße aus England!

    • @GreenTornado
      @GreenTornado 7 років тому

      Flammable Maths Gern geschehen :)

  • @cipherunity
    @cipherunity 6 років тому +1

    Bravo! I checked your answer it is correct.
    There is a very useful rule which you can apply to make your life much easier. Let me give you an example.
    ∫(2 x-1)/((x^(2 )-x+1)) = l n |x^(2 )-x+1| when you have derivative of the denominator in the numerator you do not have to substitute. You just take the log. You were having X in the numerator, you could change it to the required derivative easily. there are too many substitutions. These could have been avoided. I am sure you will learn with experience.

  • @amanullahkhan9583
    @amanullahkhan9583 2 роки тому

    That's really helpful and easy!! Integrals are my favorite from now😀

  • @maalikserebryakov
    @maalikserebryakov Рік тому +1

    When you’ve studied integration for so long you can plan out the full solution to this problem in your head

  • @mustmustapha
    @mustmustapha 6 років тому +2

    Excellent.

  • @quitecomplex6441
    @quitecomplex6441 5 років тому +1

    How would you generalize this as the integral from 0 to 1 of 1/(1+t^x) written as a function with respect to t?
    If you defined a function f(x) as the above, think about this:
    f(0)=1/2
    f(1)=ln(2)
    f(2)=π/4
    Then if you plugged in f(3), it just becomes a big mess.

  • @fireflyrobert
    @fireflyrobert 4 роки тому

    Thanks for this explanation, I like your style too

  • @rakshithgowda1606
    @rakshithgowda1606 7 років тому +1

    Let g be a continuous function which is not differentiable at 0 and let g(0) = 8. If
    f(x) = xg(x), then f '(0)=?

  • @lalitverma5818
    @lalitverma5818 7 років тому +3

    Oh so nice trick to solve cubic equation integration

    • @andrewneedham3281
      @andrewneedham3281 5 років тому +1

      Yeah, you can take advantage of the fact that any odd polynomial has at least one real root to reduce it by a degree. In some cases you get lucky and the remaining non-linear factor may be further reducible. At the least, it's an easier problem when you split it using partial fraction decomposition. I love how cleanly Flammable writes and presents the material, though!

  • @Maloscur
    @Maloscur 4 роки тому +1

    Why did the algebraic term 4/(3√3) become 1/√3?

  • @reinerwilhelms-tricarico344
    @reinerwilhelms-tricarico344 5 років тому

    Wow, I must be the busy little homunculus inside of Mathematica. I hope WolframAlpha is paying for this!-)

  • @holyshit922
    @holyshit922 7 років тому

    You used linearity of integral too early
    8:13 Better substitution woulid be x-\frac{1}{2}=\frac{\sqrt{3}}{2}u
    Answer is correct and i dont see any mistakes , but it is not the fastest way
    Could you calculate Int{\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}}
    with two different substitution (first Euler's substitution and inverse trig substitution)
    This will show that not always trig substitution is the fastest

  • @tajpa100
    @tajpa100 3 роки тому

    Excellent professor.

  • @bernardwodoame9850
    @bernardwodoame9850 Рік тому

    I just learned something today.

  • @h4c_18
    @h4c_18 6 років тому +3

    I've gone further and the logarithm part I have is: 1/6 ln((x+1)^3/(x^3+1))

    • @h4c_18
      @h4c_18 6 років тому +1

      Main reason I did it was to simplify the answer while integrating cube root of tangent x. I did t=cbrt(tan(x)) and after that u=t^2. Could you do that integral?

  • @alvinlepik5265
    @alvinlepik5265 6 років тому +1

    curious what the exclamation on the equals is for, I know it isn't significant, similarly we write a question mark when we 're not sure if equality holds. So does exclamation denote a revelation? :D

  • @paulinan926
    @paulinan926 4 роки тому

    I came for the math and stayed for the voice.

  • @francescogravina5800
    @francescogravina5800 6 років тому

    I think there's a problem at 12:19, there's a v you completely forgot to substitute and therefore i assume the final integral is not correct

  • @angadbaweja6888
    @angadbaweja6888 5 років тому +1

    I just solved this question in my maths test today the same way , I was finding more efficient way to solve this but can't find any

    • @isaacaguilar5642
      @isaacaguilar5642 4 роки тому

      You could shorten the last bit a little by instead of splitting the x-2 numerator into two fractions, you could do .5(2x-1-3) and first integral would have numerator of .5(2x-1) while the second gas .5(-3). It just cuts down on an integral

    • @Vibranium375
      @Vibranium375 3 роки тому

      Which class are you in?

  • @mashmax98
    @mashmax98 6 років тому +2

    Welcher Bahnhof ist das am Ende? kommt mir bekannt vor

  • @davidbrisbane7206
    @davidbrisbane7206 5 років тому

    This boi is good !

  • @anikm111
    @anikm111 Рік тому

    failed in my 12th grade math, 8 years later I woke up realising that I'm quite good at math

  • @DevanandanaNandithaBN
    @DevanandanaNandithaBN Рік тому

    Well done👍🏻

  • @joryjones6808
    @joryjones6808 4 роки тому

    "I can't believe this came out on my birthday. What a gift." - Jesus

  • @davisnganga6266
    @davisnganga6266 5 років тому

    Superb solution

  • @БогданДобош-э6о
    @БогданДобош-э6о 3 роки тому

    I once done 1/(x^5+1) to prove some guy that was hard. It is easy in concept but hard with numbers

  • @abhayshankar8762
    @abhayshankar8762 4 роки тому +2

    That wasn’t so hard. You could split the x-2 into (2x-1-3)/2 and with substitutions, you get the typical log and arctan functions.

  • @clashofcarrom
    @clashofcarrom 4 роки тому

    wow thanks a lot, teacher

  • @166ferdous9
    @166ferdous9 4 роки тому

    thanks a lot!❣️

  • @김민수-b2z1d
    @김민수-b2z1d 6 років тому +1

    thanks a lot.

  • @loyalladkaaa
    @loyalladkaaa 2 роки тому

    Love from India ❤️❤️

  • @ads260
    @ads260 5 років тому

    Wow that was awesome

  • @andresmoreno4726
    @andresmoreno4726 6 років тому

    Omg :o , Good video!

  • @BrianPurcell72
    @BrianPurcell72 7 років тому +3

    Really nice job. It's been awhile since I've done integration by parts. The only thing I would avoid is saying "times dx". Even though we often treat it as multiplication for substitution purposes that's not really what's happening. It's more accurate to say "in terms of x". Similar thinking to why we say dy/dx isn't division.

    • @ulrichofficial6498
      @ulrichofficial6498 7 років тому +1

      Brian Purcell dy/dx is à division. dy/dx is the limit of a quotient, so by définition it is a quotient. But dy and dx are infitesimals which mean they can be as small as we want. And if you take physics courses it will help you to understand the meaning of partial derivatives when we evaluate the gradient of a function.

    • @omar_5352
      @omar_5352 6 років тому

      As far as I know dy/dx is division .. It is the slope of the function at a certain point which by definition is the change in y divided by the change in x

  • @insouciantFox
    @insouciantFox 4 роки тому

    I've actually done 1/(x^6+1) by hand.
    Not pretty.
    Unless you like trig sub and about 4 years of cancellation, rearranging, and indentities.

  • @engr.rimarc.liguan1795
    @engr.rimarc.liguan1795 5 років тому

    How about the integration of square root of (x^3 +1)dx. If you have some an idea how to solve it in shorter way or in longer way. I tried answering this one but I dont really sure if its correct.

  • @Melvin418
    @Melvin418 Рік тому

    Cannot see the writing on the board.

  • @harshithas4637
    @harshithas4637 5 років тому

    Thank you sir 😃😃😃♥️♥️♥️

  • @heroasik5423
    @heroasik5423 3 роки тому

    Brother integrate this one sqrt((7x²+8x+9)/(10x²+11x+12))

  • @MrAssassins117
    @MrAssassins117 7 років тому +6

    Hi again :) did you already seen dr peyam's video about these type of integrals? You could check it out for the comprobation. Warning :v involucrates complex analysis

  • @nikitamanchanda3419
    @nikitamanchanda3419 6 років тому

    Integrate 1/(sinx)^6+(cosx)^6

  • @HajarHajar-zd9de
    @HajarHajar-zd9de 2 роки тому

    Hiiiiiii , j'arrive pas à comprendre comment ça se fait en arctan , comment on a fait sortir la racine carré de trois demi , s'il vous plaît aidez moi

  • @ivanolivella9395
    @ivanolivella9395 5 років тому

    Omg you really help me,I think I love you...hahahhha

  • @Nohoxe
    @Nohoxe 7 років тому +10

    🙌🙏 I must humbly ask, why would you do something that anyone else could do when given the opertunity to do the opposite. I don't watch blackpenredpen anymore because he's basically a human Wolfram alpha. Your meme videos are why I subscribed, and I patiently await an other addition. In return I will help you with your new camera 💱

  • @ngvr8463
    @ngvr8463 6 років тому +1

    Me acabas de salvar la tarea 😏😏😏

  • @Oskar-zt9dc
    @Oskar-zt9dc 4 роки тому +1

    can some one explain me why i need in the numeratior degree - 1 of denminator when im doing PFD

    • @PapaFlammy69
      @PapaFlammy69  4 роки тому

      any higher just cancels out^^

    • @Oskar-zt9dc
      @Oskar-zt9dc 4 роки тому

      @@PapaFlammy69 and Lower degree?

    • @BenjersVeggie
      @BenjersVeggie 4 роки тому

      @@Oskar-zt9dc The lower degree is already possible, if the numerator is Ax+B for example, you could just get A=0.

  • @davidbrisbane7206
    @davidbrisbane7206 3 роки тому

    A real man would evaluate ∫ 1/(1 + x⁵)dx.

  • @sakshidubey551
    @sakshidubey551 4 роки тому

    Thanks sir..

  • @antoniomartelio741
    @antoniomartelio741 6 років тому +1

    good teacher where do you live

  • @azmath2059
    @azmath2059 7 років тому

    Nice video. Flammable Maths sounds better, like you're on fire!

  • @asifalamjoy9530
    @asifalamjoy9530 6 років тому

    How can I integrate 2/(1+3x^3)? Plz brother help me in this.

    • @Xrelent
      @Xrelent 6 років тому

      Hint: u = 3^(-3) x

    • @98danielray
      @98danielray 5 років тому

      @@Xrelent I think you mean 3^(1/3)

    • @Xrelent
      @Xrelent 5 років тому

      @@98danielray oops, yeah you're right

  • @giorgosangelis8505
    @giorgosangelis8505 5 років тому +1

    First semester in engineering be like

  • @leif1075
    @leif1075 3 роки тому

    Didjtn anyone else do it by integration by parts starting with ln of (x^3+1)??

  • @filip-kochan
    @filip-kochan 5 років тому +2

    differentiate it back please :)

  • @MrRyanroberson1
    @MrRyanroberson1 7 років тому +3

    I also noticed you don't pronounce thorn or delta. Is there a reason why? I thought Germanic languages fathered these sounds? Or was it the other way around... Hm..."one (s)ird""one þird"=1/3; "(d)is""δis"=this

  • @mark_tilltill6664
    @mark_tilltill6664 5 років тому

    x^2 cancels out only because x^2 cannot be zero

  • @HakanTheUltimateHoca
    @HakanTheUltimateHoca 5 років тому +2

    Mr Beast: say "ln" and win $80.000
    Chandler: 14:24

  • @AviMehra
    @AviMehra 7 років тому

    3:46 shouldn't it be +ax not -ax

    • @HilbertXVI
      @HilbertXVI 7 років тому +3

      Avi Mehra Nope, A = - B

  • @oscarchan244
    @oscarchan244 4 роки тому +1

    Finally, as a Physics major I can calculate something that is given from our Lord and Savior papa Flammable maths. XD

  • @megacarlosloki
    @megacarlosloki 7 років тому

    Ok but, what that answer mean?

  • @Up_exams_with_Akash_Verma
    @Up_exams_with_Akash_Verma 5 років тому

    I easily understand it

  • @sashaas120301
    @sashaas120301 5 років тому

    I had it on my first math exam at uni :/

  • @LambOfDemyelination
    @LambOfDemyelination 7 років тому +2

    🙌

  • @veaucer7364
    @veaucer7364 6 років тому +1

    Oh dude thank you is usefull to ! #Flame

  • @T1T0R3
    @T1T0R3 4 роки тому

    pretty extravagant though :D

  • @SRedienhcs
    @SRedienhcs 5 років тому

    Just do the geometric series

  • @user-vm6qx2tu3j
    @user-vm6qx2tu3j 6 років тому

    Yay!

  • @sowmyag5142
    @sowmyag5142 6 років тому +9

    Maths lovers like here💖

  • @IsZhouyiran
    @IsZhouyiran 2 роки тому

    Thnks

  • @bibekg.t9421
    @bibekg.t9421 4 роки тому

    It's very lengthy and time consuming

  • @Asendrys
    @Asendrys 3 роки тому

    all the boards you use are sliding up lol

  • @iamtrash288
    @iamtrash288 4 роки тому +1

    not very interesting integral to be honest. Something you would find in a textbook or smth

  • @mertkaaner8622
    @mertkaaner8622 5 років тому +2

    (x-2)/(x^2-x+1) = 1/2[(2x-1)/(x^2-x+1) - 1/(x^2-x+1)] this may have eased your job

    • @MG-hi9sh
      @MG-hi9sh 5 років тому

      You’ve missed out a -1/(x^2-x+1) though.

  • @ЧингизНабиев-э2г
    @ЧингизНабиев-э2г 5 років тому

    It’s trivial, but it’s so fucking long

  • @omarathon5922
    @omarathon5922 6 років тому +4

    Actually hate integrals like this, tedious!!

  • @espenhagenblokkdal7574
    @espenhagenblokkdal7574 5 років тому

    Okay.

    • @espenhagenblokkdal7574
      @espenhagenblokkdal7574 5 років тому

      @@PapaFlammy69 Watching you going through this integral makes me understand how my high school students feels about the introductory examples I used when demonstrating substitution/change of variables last week.

  • @nestorv7627
    @nestorv7627 7 років тому +3

    oof