Let's get Product-ive: Integrating one infinite boi

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ • 235

  • @user-zj8jn3hs6f
    @user-zj8jn3hs6f 6 років тому +462

    When exactly did i start watching integral solving recreationally?

    • @micomrkaic
      @micomrkaic 5 років тому +27

      I’m asking myself the same question:)

    • @thomaslopez8395
      @thomaslopez8395 4 роки тому +28

      It’s weirder when you’re not even majoring in mathematics

    • @user-fungus
      @user-fungus 3 роки тому +22

      It's much weird when you're still in high school 🤣

    • @manamritsingh969
      @manamritsingh969 3 роки тому +6

      @@user-fungus relatable

    • @Nothingtonnobodson
      @Nothingtonnobodson 3 роки тому +4

      @@micomrkaic same here

  • @SteamPunkLV
    @SteamPunkLV 6 років тому +145

    at this point the product function is just used for ridiculous questions such as these

  • @NoNTr1v1aL
    @NoNTr1v1aL 6 років тому +38

    0:28 Oh shit... he's onto us.

  • @blazep5881
    @blazep5881 6 років тому +175

    Classic German humor at the start

    • @dylantellez1758
      @dylantellez1758 6 років тому +22

      Oi, this is german humor. It's no laughing matter

  • @blueberrypoptart2424
    @blueberrypoptart2424 6 років тому +21

    Such a beautiful infinity sign 4:30

  • @AlexiLaiho227
    @AlexiLaiho227 6 років тому +41

    i pictured a burned hotdog when i thought of the phrase
    "infinite tan boi"

  • @oliverinspace9252
    @oliverinspace9252 6 років тому +106

    Why not use the identity 1-tan^2(x) = 2tanx/tan(2x) instead?
    This simplifies the product directly to
    ∫(1/x) lim(2^i * tan(x/2^i)/tan x) dx
    which can also be evaluated using l'H rule in the same way as shown in the video.

    • @fengshengqin6993
      @fengshengqin6993 5 років тому +5

      Yeah,I have used this way ! Great .

    • @desertrainfrog1691
      @desertrainfrog1691 2 роки тому +2

      I'd guess he didn't think of it and decided to pursue the solution he thought of instead.

    • @madgodyt2391
      @madgodyt2391 2 роки тому

      i did with the same approch !! and yeah the product term becomes much simpler .

    • @decreasing_entropy3003
      @decreasing_entropy3003 2 роки тому +1

      Because I didn't remember this identity.

  • @cupcakesandrose
    @cupcakesandrose 6 років тому +14

    "Cute twink." Suddenly the channel name makes sense.

  • @IlTrojo
    @IlTrojo 6 років тому +21

    Very interesting as always. Just one little thing: at about 8:00 you ought to have also shifted from k to k-1 on top of the big pi - no harm done as you were going to take a limit soon afterwards, but it could have cost you the loss of some constant. Cheers!

  • @ezioauditore7378
    @ezioauditore7378 6 років тому +7

    Dude, I'm 16 and even don't understanding a thing on this video, just basic trigonometry, I got surprised because this seems impossible for me to solve but you nailed it so easy. Hope I can get to this level some day.

    • @Vibranium375
      @Vibranium375 3 роки тому

      Bro u just need a bit of practice, hard work and a bit of interest. It has been 3 years so I think seeing ur passion you might already have reached this level.

    • @ezioauditore7378
      @ezioauditore7378 3 роки тому +1

      @@Vibranium375 wow, I didn't even remember this comment. And yeah, I've improved so much since then, not so much in Calculus, but in math in general I did. Thanks for the words

    • @maalikserebryakov
      @maalikserebryakov Рік тому

      @@ezioauditore7378 1 year later, how’s your calculus skill?
      particularly your ability in the symbolic evaluation of integrals

  • @echopotato
    @echopotato 5 років тому +3

    8:29 "... ONE THING I DONT KNOW WHY IT DOESN'T EVEN MATTER HOW HARD YOU TRY"

  • @achalanand2213
    @achalanand2213 3 роки тому +2

    Take a simple math problem keep multiplying and dividing by same quantity and then use some properties to expand them, - tadaaaa - a mind bending math problem .

  • @glukhas
    @glukhas 5 років тому +3

    Es ist immer wieder spannend, deine Videos bei UA-cam anzusehen... Danke sehr, Schnuckel-Mathematiker! und Grüße aus Brasilien :)

  • @tomsxe
    @tomsxe 6 років тому +2

    I hope no one has removed their headphones after they've heard "if you want to support me a bit more, take a look ..." at 17:52 when you pointed down

  • @NotLegato
    @NotLegato 6 років тому +1

    about the pythagorean identities: you can derive them all from the unit circle by drawing a triangle with all the trig functions on it and so you won't have to memorise as much.

  • @paulg444
    @paulg444 5 років тому +7

    Friends, if you dont love him and his parents, then see your cardiologist because you dont have a heart !!

  • @justwest
    @justwest 6 років тому +3

    wow, beautiful trigonometry right there!

  • @impossiblemission4ce
    @impossiblemission4ce 5 років тому +2

    I had a lot of fun doing this one. I'm horrible at trigonometry, so I made a cheat sheet starting with Euler's formula and going from there, deriving another form of tan^2(x) and the double angle formulas and such.
    I think I'll have to keep this question ready, for a long trip.

  • @hunghinsun2123
    @hunghinsun2123 6 років тому

    At 13:12, instead of using L'Hôpital's rule, actually you can simply use the standard result of the limit of sin(x)/x being equal to 1 as x tends to 0.

  • @alexcollins9983
    @alexcollins9983 4 роки тому +1

    You could also use the double angle tan formula to get a telescoping product.

  • @omarifady
    @omarifady 6 років тому +13

    You forgot to put absolute value around sin(x) when integrating cot(x) :D

  • @Phi1618033
    @Phi1618033 6 років тому +6

    "That was quite easy."
    If you say so.

  • @joeyazbeck849
    @joeyazbeck849 6 років тому +72

    Could ur titles and intros get any cringier? Love the math skillz tho

    • @soyvjdexter
      @soyvjdexter 6 років тому +10

      The intros are hilarious. Cringy but hilarious

  • @williamtachyon2630
    @williamtachyon2630 6 років тому +11

    ”Infinity boy.”

  • @hopethisnameisntok
    @hopethisnameisntok 4 роки тому

    VERY NICE! I really enjoy. Its great for when you leave uni and start working with something that does not involve pure maths.
    7:54 don't forget the upper limit, the last term should be for x/2^k-1 altough it makes it all much more smooth as you did and in the limit nothing matters

  • @AFIyingKiwi
    @AFIyingKiwi 6 років тому +1

    At 3:23, why didn't you directly turn 2cos^2(a) - 1 into cos(2a) since that also is a double angle formula for cosine.

  • @affrokilla
    @affrokilla 6 років тому +3

    Love your videos, always explained very well. I would like to see some maths involving machine learning (solving Support Vector Machine and gradient descent for example)

  • @RkMrn101
    @RkMrn101 6 років тому +5

    i love this guy

  • @poutineausyropderable7108
    @poutineausyropderable7108 4 роки тому

    I have a feeling a bunch of clever tricks will be used.

  • @thomasblackwell9507
    @thomasblackwell9507 5 років тому

    I appreciate your accent it makes it more agreeable and acceptable. Please forgive me for being a Deuschverderber.

  • @FitR_MusicProductions
    @FitR_MusicProductions 6 років тому +2

    7:05 , “so working with finite things is way easier than working with infinite things” huh coulda fooled me.

  • @tomvanmoer8202
    @tomvanmoer8202 6 років тому +2

    "Boi", always cracks me up xD

  • @jiaming5269
    @jiaming5269 6 років тому +1

    A simplification: 1 - tan2(a) = 1-sin2(a)/cos2(a) = (cos2(a) - sin2(a)) / cos2(a) = cos(2a)/cos2(a)

  • @kono152
    @kono152 Рік тому

    crystal clear explanation, though i wish you calculated the second product too since that result kinda confused me, but ill go ahead and do it myself

  • @alexvasilachi9558
    @alexvasilachi9558 5 років тому +1

    came for math, stayed for the memes

  • @sibsbubbles
    @sibsbubbles 5 років тому

    Wow that was quite the knarly integral. You know your trig super well, man.

  • @jemcel0397
    @jemcel0397 6 років тому

    Spicy integral evaluates to a simple function. Damn clever boi

  • @neutrino5695
    @neutrino5695 5 років тому +2

    I had to search for the definition of twink in the urban dictionary:))
    Great video by the way.

  • @noway2831
    @noway2831 4 роки тому

    I lost you when you stated talking about "telescopic functions", but that's likely attributable to my limited education.

  • @nicolasbaghdassarian2119
    @nicolasbaghdassarian2119 6 років тому

    Beautiful proof ! I love maths and the way you explain it !

  • @sergioh5515
    @sergioh5515 6 років тому

    Just finished the video. What an elegant solution. Thank you! :D

  • @alexschiffer6237
    @alexschiffer6237 6 років тому +5

    Calculus and a cute twink what an amazing combination.

    • @jc8384
      @jc8384 5 років тому

      Alex Schiffer I thought he is straight? I’m confused

    • @jc8384
      @jc8384 5 років тому +1

      Flammable Maths you are cute though and clearly smart so anybody would be lucky with you lol

    • @maalikserebryakov
      @maalikserebryakov Рік тому

      there is an illness in your mind

  • @insouciantFox
    @insouciantFox 3 роки тому

    Imagine seeing a problem/solution with this in reverse...
    [Part way way through]
    So we now have cot(x) in our expression. We can’t use it as such, but a product representation might work.
    Recall from your notes that
    cot(x) == 1/x *prod[k=1,inf](1-tan^2(x/2^k))
    From this it is obvious that....

  • @nashweekendcovers
    @nashweekendcovers 3 роки тому

    "seek n square" flammy says.😂

  • @subhadeepsarkar5606
    @subhadeepsarkar5606 4 роки тому +1

    that's a damn to be given

  • @UrasSomer
    @UrasSomer 5 років тому +1

    This madman still reads the comments on this

  • @ericthegreat7805
    @ericthegreat7805 6 років тому

    Great video, but in my calculus class i was taught an easier way to do limcos(x)sin(x)(1/2k)/(sin(x/2k)) = 1/x * cos(x)*sin(x)* lim(x/2k)/sin(x/2k). Now we know sin(a)/a -> 1 as a -> 0 which does if a = x/2^k, so the limit is just cos(x)sin(x)/x.

  • @aniketeuler6443
    @aniketeuler6443 3 роки тому +1

    Flammy Jens what's the name of the music in the beginning of video

  • @Bollibompa
    @Bollibompa 5 років тому

    Why can we use L'Hôpital's when the values k take are discrete? Shouldn't we use Stolz-Cesàro? I remember pondering this when deriving sinc(x) from the infinite product of cos(x/2^n).
    On the other hand I can't find a case where expanding from discrete to continuous would be a problem unless the argument is quite nasty.

  • @shivanshnigam4015
    @shivanshnigam4015 Рік тому

    We ain't callin em functions here we call em Bois 💀

  • @mijoo5685
    @mijoo5685 5 років тому

    En el minuto 13:30, por qué se puede usar L’Hôpital si k es una variable no continua? Osea, k es un número natural... en ese caso no se podría derivar o si me equivoco entonces por qué se podría?

  • @bimbumbamdolievori
    @bimbumbamdolievori 2 роки тому

    I wonder if these big integrals are constructed by reverse process or if you can really figure out such amount of steps

  • @nujabraska
    @nujabraska 2 роки тому

    Telescoping series was pretty cool

  • @alielhajj7769
    @alielhajj7769 2 роки тому

    Splitting the infinite product needs some conditions man

  • @clementboutaric3952
    @clementboutaric3952 5 років тому

    This was not deep math but trig skill. Both of which are enjoyable.

  • @Rotiiii98
    @Rotiiii98 6 років тому

    When you moved the index on that product form 2 to 1 should you haved to move the index on k too? from k to k+1?

  • @nicholasheilig3694
    @nicholasheilig3694 4 роки тому

    Amazing! I love you flammy boi! Keep it up.

  • @ryderpham5464
    @ryderpham5464 6 років тому +2

    You read my mind; I do only come for the cute twink

  • @colorfulcalculus4526
    @colorfulcalculus4526 6 років тому

    Incredible video! Love it!

  • @domenicopiegaia7816
    @domenicopiegaia7816 6 років тому

    this was my first papa flammy video ever

  • @yasuotheunforgiven2839
    @yasuotheunforgiven2839 6 років тому +4

    keep it up from morocco

  • @brayancantero
    @brayancantero 5 років тому

    Hello, do you explain the change from cartesian to polar coordinates in Gaussian Integral? It's very important. Thanks. Like, explain how to obtain rdrd(theta) from dxdy, thanks.

  • @almanahulzilnicdesuceava5379
    @almanahulzilnicdesuceava5379 6 років тому +1

    12:00 you could use instead
    LIM (sin f(x))/f (x) = 1
    f (x)->0

  • @omgopet
    @omgopet 6 років тому

    14:00 you can make your life much easier by using the Taylor series expansion for limits like these.

  • @Jeff-wc5ho
    @Jeff-wc5ho 6 років тому +1

    This reminds me of an old MIT Integration bee problem

  • @PandaWaffle3
    @PandaWaffle3 6 років тому +6

    Do more Putnam problems!!!!

  • @lasa18
    @lasa18 2 роки тому

    Hey math guy prove this:
    Every Irrational number can be written as a ratio between two p-adic numbers

  • @immersionmusic
    @immersionmusic 5 років тому

    Papa Flammy this ist a sehry neiß Koßein formula. Very gut

  • @ranjitsarkar3126
    @ranjitsarkar3126 3 роки тому +1

    Back in the day when his handwriting was still understandable

  • @mokouf3
    @mokouf3 5 років тому

    Wait...cosine * secant = 1 isn't it?
    When you did make lim(n→∞)Π(i=1 to n)cos(x/2^(i-1)) = cos(x)*lim(n→∞)Π(i=1 to n)cos(x/2^(i))
    Note that you have cos(x) *Πcos(x/2^i) * [Πsec(x/2^i)]^2, isn't it cos(x)*Πsec(x/2^i) ?

  • @sleindarfeau8657
    @sleindarfeau8657 5 років тому

    Great one boi !
    I just wonder why you didn't use the fact that sin(x/2^k)~x/2^k when k->oo which would have given you the 1/x limit quickier that with L'hôpital's rule

  • @xFamous24
    @xFamous24 6 років тому

    Where can you get problems like this? I would love to solve some of these trick integrals. Do you have a specific source? Danke schonmal :)

  • @anmolempire1197
    @anmolempire1197 4 роки тому +1

    Nice one 😊

  • @pranavva5418
    @pranavva5418 6 років тому +2

    This was beautifulll

  • @janderson2709
    @janderson2709 6 років тому

    14:46 'don't forget the x from before'
    Which x? From where?

  • @RaspingBubbles6
    @RaspingBubbles6 6 років тому +1

    Can you find the area between the functions sqrt(X) and ln(X + 1) + 1 from 0 to their intercept

  • @adrianamor8472
    @adrianamor8472 6 років тому

    Instead of using L'H rule you could just use the fact that lim x->0 x/sin(ax) = 1/a to prove that lim k->inf 2^-k / sin(x*2^-k) = 1/x . You don't even have to calculate derivatives :)

  • @curiousminds301
    @curiousminds301 6 років тому +1

    Amazing video sir

  • @itsanotheraccount
    @itsanotheraccount 5 років тому

    **calls himself twink**
    Most bestest calculus video maker

  • @mokouf3
    @mokouf3 4 роки тому

    You forgot to take absolute value at last!

  • @chuayewhui145
    @chuayewhui145 6 років тому +1

    Short boi disguise as long boi

  • @daemonguy2
    @daemonguy2 6 років тому

    What so now we can log negative values?

  • @joshuabonet
    @joshuabonet 3 роки тому

    This was a fucking amazing integral boi

  • @CreativeStyled
    @CreativeStyled 6 років тому

    This channel is so gooooodd.

  • @faithhill9811
    @faithhill9811 3 роки тому

    Is anyone able to tell me where he got this integral from??

  • @darmstadtbeste4590
    @darmstadtbeste4590 6 років тому

    this is so beautiful

  • @karljoyeux5148
    @karljoyeux5148 4 роки тому +1

    "that was quite easy"

  • @gamedays4877
    @gamedays4877 4 роки тому +1

    Yes

  • @hallowizer440
    @hallowizer440 5 років тому

    17:34 Wait...ln(u) = ln(sin(x))+C? That means C=0, so every arbitrary constant was always equal to 0!

  • @Joe-bb4yi
    @Joe-bb4yi 2 роки тому

    2cos^2(a)-1 is also cos(2a)

  • @teekayanirudh
    @teekayanirudh 6 років тому

    First 40 seconds earned my like. That aside brilliant video ;)

  • @danielmoreno5481
    @danielmoreno5481 6 років тому

    Great video, but I have a question for you. For the L'Hôpital bit, why wouldn't you simply notice that sin(t)~t for small t?

    • @johanliebert8544
      @johanliebert8544 6 років тому

      You could have actually used the standard limit
      Lt x->0 (sin(x)/x )=1

    • @johanliebert8544
      @johanliebert8544 6 років тому

      Great video by the way 😘

  • @robdogz152
    @robdogz152 6 років тому

    This was one spicy Boi

  • @ferashamdan4252
    @ferashamdan4252 6 років тому

    Thank you

  • @bluebears6627
    @bluebears6627 6 років тому

    I always fall for that too but you missed the absolute value on the ln when integrating the final thing

  • @mihaiciorobitca5287
    @mihaiciorobitca5287 6 років тому

    What means those 3 points ,from 2:15

  • @nachusa7278
    @nachusa7278 6 років тому

    bloody legend

  • @theopapa8232
    @theopapa8232 6 років тому

    Isnt this an integrak from the integration bee at mit?

  • @parthpawar7837
    @parthpawar7837 5 років тому

    More infinite products bruh please!