Math Olympiad | Find missing side length m of the triangle | (step-by-step explanation)

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ •

  • @Fensmiler
    @Fensmiler Рік тому +2

    Early and i like these videos

    • @PreMath
      @PreMath  Рік тому +1

      Thank you! Cheers! 😀
      You are awesome. Keep it up 👍

    • @Fensmiler
      @Fensmiler Рік тому

      ​@@PreMathThanks, cheers!

  • @Monsieur_Cauchemar-YT
    @Monsieur_Cauchemar-YT Рік тому +3

    Did it exactly the same way, but instead of Pythagoras, I used the cosine rule on △DEF, such that:
    (4 - m)² = m² + m² - 2.m.m.cos(180 - 4x)
    ⇒ (4 - m)² = 2m² - 2m²[- cos(4x)]
    ⇒ (4 - m)² = 2m²[1 + cos(4x)]
    ⇒ 1 + cos(4x) = (4 - m)²/(2m²)
    ⇒ cos(4x) = [(4 - m)² - 2m²]/(2m²)
    Now, in △BCD, cos(4x) = 1/m, so:
    1/m = [(4 - m)² - 2m²]/(2m²)
    ⇒ 2m = (4 - m)² - 2m²
    ⇒ 2m = 16 - 8m + m² - 2m²; and you obtain the same equation:
    m² + 10m - 16 = 0

  • @Abby-hi4sf
    @Abby-hi4sf Рік тому

    Super!

  • @richardsullivan1655
    @richardsullivan1655 Рік тому +2

    I wouldn’t have ever solved this one. Thank you Professor

  • @madhusudanaraokuppili1957
    @madhusudanaraokuppili1957 Рік тому

    Very good explanation professor

  • @egillandersson1780
    @egillandersson1780 Рік тому +2

    This construction make the solution easier but is not obvious to find. My solution involves tan (4x) / tan (x) = 5; it works but not so easier !

  • @soli9mana-soli4953
    @soli9mana-soli4953 Рік тому

    Nice solution Prof!!

  • @WaiWai-qv4wv
    @WaiWai-qv4wv Рік тому +3

    I always respect you❤

    • @PreMath
      @PreMath  Рік тому +1

      Thank you! Cheers! 😀
      You are the best, dear ❤️
      Keep it up 👍

  • @wackojacko3962
    @wackojacko3962 Рік тому +3

    Adding auxiliary lines like DE and DF makes the problem obvious too solve but is not obvious at all to discover these constructs ...but I'm finding that trying simple basic auxiliary lines like in this problem, and watching your many tutorials more than 50% of the time usually is the way to proceed and solve. 🙂

    • @PreMath
      @PreMath  Рік тому +1

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @bigm383
    @bigm383 Рік тому

    Thanks Professor!❤

  • @tsriketwm7274
    @tsriketwm7274 Рік тому

    Nice one. That’s a cleverer idea than using the double angle formulae

  • @KAvi_YA666
    @KAvi_YA666 Рік тому +1

    Thanks for video.Good luck sir!!!!!!!!!!!!🖤

    • @PreMath
      @PreMath  Рік тому +1

      You are very welcome!
      Thank you! Cheers! 😀
      You are awesome. Keep it up 👍

  • @arnavkange1487
    @arnavkange1487 Рік тому +2

    I loved this sum

    • @PreMath
      @PreMath  Рік тому

      Excellent!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому +1

    m^2=1+(tg4x)^2=1+(5tgx)^2=1+5(13-sqrt164)

  • @aryanbatra7223
    @aryanbatra7223 Рік тому

    Thankyou Sir! ❤ Happy teacher's day

  • @murdock5537
    @murdock5537 Рік тому

    This is really amazing, many thanks, Sir! You are great!
    h^2 = 15 - 10m = m^2 - 1 → (m + 5)^2 = 41 → m > 0 → m = √41 - 5

  • @albertomarin5264
    @albertomarin5264 Рік тому

    Excelente y elegante solución. Hice una solución trigonométrica muy larga.

  • @RondoCarletti
    @RondoCarletti 6 місяців тому

    The great and the small triagle are congruent: The angle x = 18°, 4x = 72°. That makes it easy.

  • @pralhadraochavan5179
    @pralhadraochavan5179 Рік тому

    Good morning sir Happy teachers day

  • @arnavkange1487
    @arnavkange1487 Рік тому +2

    So many constructions u gave but it was understood by me

    • @PreMath
      @PreMath  Рік тому

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @muphychen7145
    @muphychen7145 Рік тому

    Maybe another solution m= -41^1/2-5 belongs to another parallel universes as well as i^2=-1?

  • @ΓΕΩΡΓΙΟΣΛΕΚΚΑΣ-μ9μ

    Καλησπέρα σας από Ελλάδα. μία εναλλακτική λύση αντί των δύο Πυθαγορείων θεωρημάτων στο τέλος θα ήταν να εφαρμόζαμε το θεώρημα Stewart στο τρίγωνο CDE με τέμνουσα την CE την DF. Τα m^3 απλοποιούνται και καταλήγουμε στην ίδια δευτεροβάθμια εξίσωση. Ευχαριστώ.

  • @robertlynch7520
    @robertlynch7520 9 місяців тому

    You know … sometimes it is better (really) to work both symbolically, and with trigonometry. Well, at least that's what I think.
    [1.1]  𝒉 = 5 × tan 𝒙 … height, and also
    [1.2]  𝒉 = 1 × tan 4𝒙
    But, what is (tan 4θ) anyway? well, in a sense it is (tan 2×2×θ), so that's not too hard. Let's use 𝒕 to be (tan θ):
    [2.1]  tan θ = 𝒕
    [2.2]  tan 2θ = 2𝒕 / (1 - 𝒕²)
    [2.3]  tan 4θ = 2(2𝒕 / (1 - 𝒕²)) / (1 - ((2𝒕)/(1 - 𝒕²))² )
    Its not very obvious on the surface, but with some algebraic reduction I got:
    [2.4]  tan 4θ = 4𝒕(1 - 𝒕²) / [(1 - 𝒕²)² - (2𝒕)²]
    Which further reduces to
    [2.5]  tan 4θ = (4𝒕 - 4𝒕³) / (𝒕⁴ - 6𝒕² ⊕ 1)
    Since we've already established [1.1] and [1.2], then make 'em equal:
    [3.1]  5𝒕 = (…) … substitute in [2.5], and divide by 𝒕, cross multiply
    [3.2]  5𝒕⁴ - 30𝒕² ⊕ 5 = 4 - 4𝒕² and shift around
    [3.3]  5𝒕⁴ - 26𝒕² ⊕ 1 = 0 … which is kind of quadratic, so
    [4.1]  𝒕² = [5.161250 or 0.038750] … by quadratic solution. √() to 𝒕
    [4.2]  𝒕 = [2.27184 or 0.19685]
    Well, clearly 2.27 is too large (think how tall the (5 × 2.27) bit would be). So, smaller
    [5.1]  𝒉 = 5 tan θ = 5𝒕 = 0.984251 … so by pythagoras
    [5.2]  𝒎 = √(𝒉² + 1²)
    [5.3]  𝒎 = 1.40312
    Which (kind of surprisingly) is exactly the same as your answer.
    ⋅-⋅-⋅ Just saying, ⋅-⋅-⋅
    ⋅-=≡ GoatGuy ✓ ≡=-⋅

  • @Pryszczyk1
    @Pryszczyk1 Рік тому

    ΔACD and ΔBCD similar, so .m/AC = BC/m. m/6 = 1/m, so m= sqrt(6). :)

  • @JSSTyger
    @JSSTyger Рік тому

    Well I came up with this amazingly complicated equation.
    m^5-m^4-152m³-48m²+776m-576 = 0.
    How I got there....I used 25+h² = r², 1+h² = m², and cos(4x) = 1-200h²/r^4

    • @JSSTyger
      @JSSTyger Рік тому

      Wow I just verified that it works :D

  • @DB-lg5sq
    @DB-lg5sq Рік тому

    Deux solutions m^2 égal à 66+ou-10racine41

  • @TheDHemant
    @TheDHemant Рік тому

    5

  • @DB-lg5sq
    @DB-lg5sq Рік тому

    But x=?

  • @comdo777
    @comdo777 Рік тому

    asnwer=3.5cm isit

  • @DB-lg5sq
    @DB-lg5sq Рік тому

    Ne suivez pas la construction

  • @kirolosreda7262
    @kirolosreda7262 Рік тому

    Why BAD = ADE😄

  • @phlynheubach3745
    @phlynheubach3745 Рік тому

    Nice solution. I solved it just using the given two right triangles, using tan(x) and tan(4x) and the angle sum formula for tan(a+b). Found the value of x=arctan(+/-sqrt((26+/-sqrt(656))/10))=11.13634131 degrees (only solution that works). Then used m=1/cos(4x)=1.403124238