Mathematical Olympiad | Find missing side lengths in the triangle | (Easy tutorial) |

Поділитися
Вставка
  • Опубліковано 17 лис 2024

КОМЕНТАРІ • 48

  • @mathbynisharsir5586
    @mathbynisharsir5586 Рік тому +4

    You are a great teacher sir

    • @PreMath
      @PreMath  Рік тому +1

      So nice of you, dear❤️
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @jonchester9033
    @jonchester9033 Рік тому +1

    The problems you present are as addictive as popcorn. Help! I can't stop.😍

  • @HappyFamilyOnline
    @HappyFamilyOnline Рік тому +2

    Great explanation 👍
    Thanks for sharing 😊

  • @harikatragadda
    @harikatragadda Рік тому +2

    Let AC = a
    Extend CD to CF such that CBF forms an Equilateral triangle.
    ∆DCA is Similar to ∆DFB with sides scaled by 2.
    Hence, DB = 2*AD = 14
    CD = 2a/3
    Applying Cosine rule in ∆ACD,
    a² + (2a/3)² - 2*a*(2a/3)Cos60 = 7²
    a = 3√7
    AC = a = 3√7
    CB = 2a = 6√7
    CD = 2a/3 = 2√7
    Image here
    ua-cam.com/video/I6hFOKLEHno/v-deo.htmlsi=HC51ck8iU3RVsdp3

  • @ybodoN
    @ybodoN Рік тому +2

    Since DB = 14 we then have AB = 21, AC = x, CB = 2x and cos 120° = −1/2.
    By the law of cosines: 21² = x² + (2x)² − 2 x (2x) (−1/2) ⇒ x² = 63 ⇒ x = 3√7.
    To find DC, Stewart's theorem could also be used to solve this special case.

    • @PreMath
      @PreMath  Рік тому

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

    • @johnbrennan3372
      @johnbrennan3372 Рік тому

      Nice method

  • @devondevon4366
    @devondevon4366 Рік тому +1

    Answer DC=5.291 AC 7.937 BC 15.874, and DB=14
    note 7.927 = 3 sqrt 7 and 15.874 = 6 sqrt 7 and 5.291 = 2 sqrt 7
    Using a different method.
    Let AC= a
    then BC = 2a
    Using the law of cosine to find AB
    c^2 =a^2 + b^2 - 2ab cos 120 degrees
    = (a)^2 + (2a)^2 - 2(a*2a) -1/2
    = a^2 + 4a^2 +2a^2
    = 7a^2
    c= sqrt 7a
    Hence AB = sqrt 7a
    Calculating angle A using the law of cosine
    a=a , b =2a and c= sqrt 7a
    a^2= b^2 + c^2 - 2bc cos 'alpha'
    arccos a = b^2 + c^2 - a^2
    ------------------------
    2bc
    (2a)^2 + (sqrt 7a)^2- (a^2)
    ------------------------------------------
    2* 2a* sqrt 7a
    4a^2 + 7a^2- a^2
    - ---------------------------
    -- 4a *sqt 7a
    10a^2
    ---------
    4a * 2.6457a
    10a^2/10.58 a^2
    10/10.58 = .94517
    Hence, one angle= 19.059 degrees
    and the other angle= 40.94 degrees ( 180 - ( 120 + 19.059)
    Let's focus on Triangle ACD with side 7 and degrees 60, 40.94, and 79.06
    Using the law of sine to find length AC with c = 7
    DC = c * sin 40.94/sin 60.1
    = 5.291
    AC = c* sin 79.06/sin 60.1
    = 7 * sin 79.06/60.1
    = 7.937
    Hence BC = 7.937 * 2 = 15.874
    To find DB
    Use the Law of Sine
    15.874/sine 100.94 degrees = DB/sine 60 degrees
    15.874 * sin 60 degrees/sin 100.94 = DB (cross-multiply)
    15.874 *0.88294=DB
    14 = DB

    • @PreMath
      @PreMath  Рік тому

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @alexniklas8777
    @alexniklas8777 Рік тому

    From the property of the bisector I determined:
    BD= 14; AB= 21.
    Labeled: AC= a; BC= 2a.
    According to the Pythagorean theorem,
    AB^2=a^2+(2a)^2-4a×cos(120°),
    found: AC=a=3√7; BC= 6√7; CD= 2√7
    Thanks sir!😊

  • @chrissmith7259
    @chrissmith7259 Рік тому +2

    enjoyed this thanks.

    • @PreMath
      @PreMath  Рік тому

      Glad you enjoyed it❤️
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @misterenter-iz7rz
    @misterenter-iz7rz Рік тому +1

    First clearly BD=14, let x=AC, 7x^2=21^2, x=AC=3sqrt(7), BC=6sqrt(7), let y=CD, 63+y^2-3sqrt(7)y=49, y^2-3sqrt(7)y+14=0, y=CD=sqrt(7) or 2sqrt(7).😊

    • @PreMath
      @PreMath  Рік тому

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

    • @misterenter-iz7rz
      @misterenter-iz7rz Рік тому

      ​@@PreMathwithout angle bisected theorem, it is hard to discard the wrong case.😢 I attempt to compute CD in two ways, one in ACD, one in BCD, we can conclude 2sqrt(7) is the unique right answer.

  • @Aryan_1Official
    @Aryan_1Official Рік тому +2

    Pre- eminent explanation sir ! 🥹🥹

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀
      You are awesome. Keep it up 👍

  • @じーちゃんねる-v4n
    @じーちゃんねる-v4n Рік тому

    let AC=a then from the angle bisector rule BD=14, from the cosine rule cos120°=(a^2+4a^2-21^2)/(2a^2) ∴a=3√7
    dot product of vectors CA・CB=2a^2cos120°=-a^2 ∴ |CD|^2=|(2CA+CB)/3|^2=(4a^2+4CA・CB+4a^2)/9=(4/9)a^2 ∴|CD|=(2/3)(3√7)=2√7

  • @devondevon4366
    @devondevon4366 Рік тому

    Beautiful solution, but below is my approach.
    Whenever there is a triangle with a 120 degree-angle and one side is twice the other,
    the degrees are always 120, 40.893, and 19.107 degrees due to the cosine formula :
    c^2 = a^2 + b^2- 2ab cos C
    c= sqrt (a^2 + b^2 - 2ab cos C)
    If let a =a and b=2a
    c will = sqrt 7a
    So if a =2, then the sides are
    2, 4, and 2 sqrt 7
    You will always get a sqrt 7
    The reason AB was 21 and not include sqrt 7 was because the sides (as found out later)
    were 3 sqrt 7 , and 6 sqrt 7 (notice 6sqrt 7 is twice 3 sqrt 7). Hence AB becomes 3 sqrt 7. sqrt 7,
    but sqrt 7* sqrt 7 = 7, and 7*3 = 21, and that why AB is 21, and DB is 14 (21-7) given that
    AD is 7
    In solving Arccos C ( Using the cosine formula Arccos= b^2 + c^2 - a^2 will always give
    ________________
    2bc
    40.893 degrees and 19.107 degrees for the other two angles
    From that, the Law of Sine can be used to solve the unknown sides of this triangle.

  • @JamesDavy2009
    @JamesDavy2009 Рік тому

    If two products have a common factor, you can apply the algebraic method for the sum or difference of two products and treat the common factor as a variable: 18 × 7 - 14 × 7 = 4 × 7

  • @jimlocke9320
    @jimlocke9320 Рік тому +1

    An alternative construction is to extend AC up to the right and drop a perpendicular from B, calling the intersection F.

    • @PreMath
      @PreMath  Рік тому

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

    • @PreMath
      @PreMath  Рік тому

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 Рік тому

    For CD=y using law of cosines on ACD and CBD we will have two quadratic equations with two solutions each, with 2*sqrt(7) be the only common solution therefore y=2*sqrt(7).Similarly using law of sines this time on the above triangles we find the other missing sides

  • @timurkodzov718
    @timurkodzov718 Рік тому +1

    I solved this geometry problem and got also BD=14, AC=3*sqrt(7), BC=6*sqrt(7) and CD=2*sqrt(7). I drawed also a triangle with 90°, but inside the triangle ABC. I didn't knew, that s=sqrt(ab-xy) (this is a new knowledge for me). I figured out, that CD=2*sqrt(7), because I applied intercept and pythagorean theorem and figured out, that 2*AC=3*CD.

    • @PreMath
      @PreMath  Рік тому +1

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @devondevon4366
    @devondevon4366 Рік тому +1

    AC= 7.937
    DC=5.291
    BD=14
    BC=15.874

    • @PreMath
      @PreMath  Рік тому

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @parthtomar6987
    @parthtomar6987 Рік тому +2

    I gave you 101th like nice solution sir

    • @PreMath
      @PreMath  Рік тому

      Thanks for liking ❤️
      You are awesome. Keep it up 👍

  • @ankitchoudhary2779
    @ankitchoudhary2779 Рік тому

    It could be easier if you apply cosine rule, then you can get direct value

  • @wackojacko3962
    @wackojacko3962 Рік тому +1

    @ 9:51 that Cur barking in the background is either a mutt, very unattractive , aggresive , or all three but redeems itself by conCURring with the results of this very cool problem. The dog deserves a treat! 🙂

    • @PreMath
      @PreMath  Рік тому +1

      My neighbor's dogs😀

  • @chelliahRaveedrarajah
    @chelliahRaveedrarajah Рік тому +2

    Professor, can you prove angle bisector theorem for us?

    • @PreMath
      @PreMath  Рік тому

      Nice suggestion! I'll try my best to upload soon.
      You are awesome. Keep it up 👍

    • @howardaltman7212
      @howardaltman7212 Рік тому

      Never had seen that formula either. Was able to prove it using the Law of Cosines twice. Is there a better way?@@PreMath

  • @unknownidentity2846
    @unknownidentity2846 Рік тому +2

    Let's do it side by side:
    .
    ..
    ...
    ....
    .....
    Triangle ACD:
    AC/sin(∠ADC) = AD/sin(∠ACD)
    AC/sin(∠ADC) = 7/sin(60°)
    Triangle BCD:
    BC/sin(∠BDC) = BD/sin(∠BCD)
    2*AC/sin(180°−∠ADC) = BD/sin(60°)
    2*AC/sin(∠ADC) = BD/sin(60°)
    [2*AC/sin(∠ADC)] / [AC/sin(∠ADC)] = [BD/sin(60°)] / [7/sin(60°)]
    2 = BD / 7
    ⇒ BD = 14
    Triangle ABC:
    AB² = AC² + BC² − 2*AC*BC*cos(∠ACB)
    (AD + BD)² = AC² + (2*AC)² − 2*AC*(2*AC)*cos(120°)
    (7 + 14)² = AC² + 4*AC² − 4*AC²*(−1/2)
    21² = AC² + 4*AC² + 2*AC²
    21² = 7*AC²
    AC² = 21²/7 = 21*3 = 63
    ⇒ AC = 3√7
    ⇒ BC = 6√7
    Triangle ACD:
    AD² = AC² + CD² − 2*AC*CD*cos(∠ACD)
    7² = (3√7)² + CD² − 2*(3√7)*CD*cos(60°)
    49 = 63 + CD² − (6√7)*CD*(1/2)
    CD² − (3√7)CD + 14 = 0
    CD
    = (3/2)√7 ± √(63/4 − 14)
    = (3/2)√7 ± √(63/4 − 56/4)
    = (3/2)√7 ± √(7/4)
    = (3/2)√7 ± (1/2)√7
    CD = √7 or CD = 2√7
    These two possible solutions must be verified with the triangle BCD:
    BD² = CD² + BC² − 2*BC*CD*cos(∠BCD)
    14² = (√7)² + (6√7)² − 2*√7*6√7*cos(60°)
    196 = 7 + 252 − 84*(1/2)
    196 = 259 − 42
    196 = 217
    14² = (2√7)² + (6√7)² − 2*2√7*6√7*cos(60°)
    196 = 28 + 252 − 168*(1/2)
    196 = 280 − 84
    196 = 196 ✓
    So CD=2√7 is the correct solution. Summary:
    AD = 7
    BD = 14
    AB = 21
    AC = 3√7
    BC = 6√7
    CD = 2√7
    Best regards from Germany

    • @PreMath
      @PreMath  Рік тому

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep rocking 👍

    • @timurkodzov718
      @timurkodzov718 Рік тому

      👍

    • @timurkodzov718
      @timurkodzov718 Рік тому

      Alternativ: Verlängere die Strecke CD einmal bis zur Länge CB und einmal bis zur Länge AC. Zwei ähnliche gleichseitige Dreiecke => BD=14. Sei M der Mittelpunkt der Strecke BC => DM=7 und AM schneidet CD in einem Punkt S. ASD=90°. Sei O der Mittelpunkt der Strecke BD => AMO=90° nach Umkehrung des Satzes des Thales. CD und MO parallel => nach Strahlensatz MO=(1/2)*CD. SD und MO parallel => nach Strahlensatz SD=(1/2)*MO=(1/4)*CD. Wegen 60° ist CS=(1/2)*AC => nach Pythagoras (AS)²=(AC)²-(1/4)*(AC)²
      =(3/4)*(AC)². Es gilt auch CS=(3/4)*(CD) =>(3/4)*(CD)=(1/2)*(AC)
      3*(CD)=2*(AC)
      Also: (AS)²=(3/4)*(AC)²=(27/16)*(CD)²
      Pythagoras anwenden: 49=(27/16)*(CD)²+(1/16)*(CD)²
      =(28/16)*(CD)²
      7=(1/4)*(CD)² => CD=2*sqrt(7)
      => AC=(3/2)*(CD)=(3/2)*2*sqrt(7)
      =3*sqrt(7)
      => BC=2*AC=6*sqrt(7)

    • @timurkodzov718
      @timurkodzov718 Рік тому

      Ganz kleine Korrektur: ich meinte nicht "wegen Umkehrung des Satzes des Thales", sondern "wegen dem Satz des Thales".

  • @phzzxguy
    @phzzxguy Рік тому

    What an absurdly complicated method to find CD, using an obscure formula that might be interesting to prove, but not good to use.
    Law of Cosines and some easy trig would take 1/4 of the time.

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому +1

    😂AC=21,CB=42,CD=sqrt28...non ho controllato i calcoli, ah ah.. Ho fatto tutto col teorema dei seni

    • @PreMath
      @PreMath  Рік тому

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍