A Nice Algebra Problem | Math Olympiad | How to solve for all roots?

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 24

  • @1234larry1
    @1234larry1 5 днів тому +3

    Since what you did by factoring was essentially the same thing as polynomial long division why not just do polynomial long division directly?

    • @SALogics
      @SALogics  4 дні тому +2

      For solving in less time! ❤

  • @brianwade4179
    @brianwade4179 5 днів тому +1

    m = sqrt(x)
    m(m^2-1)=6
    m^3-m-6=0
    It's a cubic so we are expecting three m values
    By Rational Root Theorem, root candidates are +-1, +-2, +-3, +-6
    By trial +2 is a root
    Because +2 is a root, (m-2) is a factor
    So m^3-m-6 = (m-2)q(m)
    So q(m) = (m^3-m-6)/(m-2)
    We can find q(m) using polynomial division
    By polynomial division, q(m)=m^2+2m+3
    To find the roots of q(m), complete the square
    Completing the square: m^2+2m+1=-3+1=-2
    (m+1)^2=-2
    m+1 = +-sqrt(-2)
    m=-1+-sqrt(2)i
    We now have the three m values: {2,-1+sqrt(2)i,-1-sqrt(2)i}
    x = m^2 = {2^2, (-1+sqrt(2)i)^2, (-1-sqrt(2)i)^2}
    By FOIL, (-1+sqrt(2)i)^2 = (-1+sqrt(2)i)(-1+sqrt(2)i) = 1-sqrt(2)i-sqrt(2)i-2 = -1-2*sqrt(2)i
    Similarly, (-1-sqrt(2)i)^2 = -1+2*sqrt(2)i
    So x = {4,-1-2*sqrt(2)i,-1+2*sqrt(2)i}
    Notice I used no magic insight or "voila!" factoring. This was all just sheer calculation.
    If you are a student learning to solve these, go learn the Rational Root Theorem, go learn polynomial division, and go learn completing the square.

  • @MrPoornakumar
    @MrPoornakumar 5 днів тому +1

    Call √x = y; then the eqn. becomes ²³
    y(y² -1) = 6.
    y³ -y = 6.
    y³ -y -6 = 0.
    We need a cub term in the numeric, so 6 = 8 -2 = 2³ -2.
    y³ -y -(2³ -2) = 0
    y³ -2³- (y -2) = 0
    (y -2)(y²+2y+4)- (y -2) = 0
    (y -2)(y²+2y+4 -1) = 0
    (y -2)(y²+2y+3) = 0
    (y -2) = 0 and (y²+2y+3) = 0 give two solutions.
    (y -2) = 0,
    y=2 . . . . soln.1
    y²+2y+3 = 0 is a quadratic eqn. where discriminant D = √[2² - 4 . 1 . 3] = √[-8] which doesn't give real roots.
    ∴ y=2=√x.
    x=4.

  • @SantoshSah-v2b
    @SantoshSah-v2b 2 дні тому +1

    √4 (4-1)=6
    2*3=6
    6=6
    :.x=4

  • @emekaosegbo37
    @emekaosegbo37 4 дні тому +1

    x(x^2_2x+1)=36=4.9 , where x=4, and x^2-2x+1=9

  • @key_board_x
    @key_board_x 5 днів тому +1

    √x * (x - 1) = 6 → let: m = √x
    m.(m² - 1) = 6
    m³ - m = 6
    m³ - m = 8 - 2
    m³ - 8 - m + 2 = 0
    (m³ - 2³) - (m - 2) = 0 → recall: (a³ - b³) = (a - b).(a² + ab + b²)
    (m - 2).(m² + 2m + 4) - (m - 2) = 0
    (m - 2).[(m² + 2m + 4) - 1] = 0
    (m - 2).(m² + 2m + 3) = 0
    First case: (m - 2 ) = 0
    m = 2 → recall: √x = 2
    √x = 2
    → x = 4
    Second case: (m² + 2m + 3) = 0
    Δ = 2² - (4 * 3) = 4 - 12 = - 8 = 8i² = 4i² * 2
    m = (- 2 ± 2i√2)/2
    m = - 1 ± i√2 → recall: √x = 2
    √x = - 1 ± i√2
    x = (- 1 ± i√2)²
    x = 1 ± 2i√2 + 2i²
    x = 1 ± 2i√2 - 2
    → x = - 1 ± 2i√2

  • @ckoque1
    @ckoque1 5 днів тому +1

    Ровно за 3 секунды в уме решил что х равен 4. К чему эта демагогия??

  • @gopagon2114
    @gopagon2114 4 дні тому +1

    X=4

  • @prollysine
    @prollysine 5 днів тому +1

    let u=Vx , u^3+/-u^2-u-6=0 , (u-2)(u^2+2u+3)=0 , u=(-2+/-V(4-12))/2 , u=2 , Vx=2 , x=4 ,
    1 -2 / u= -1+i*V2 , -1+i*V2 /,
    2 -4
    3 -6

    • @SALogics
      @SALogics  5 днів тому +2

      Very nice! ❤

    • @prollysine
      @prollysine 5 днів тому +1

      @@SALogics Thanks!

    • @SALogics
      @SALogics  5 днів тому +2

      @@prollysine You're very welcome! ❤❤

    • @prollysine
      @prollysine 5 днів тому

      @@SALogics Thanks!

  • @carmenpop
    @carmenpop 3 дні тому

    x=4