Integrate 1(1+x^4) using Method 1

Поділитися
Вставка
  • Опубліковано 26 січ 2025

КОМЕНТАРІ •

  • @srisaishravan5512
    @srisaishravan5512 Місяць тому +25

    Ayyyy my favourite youtuber. Thanks for a video on integrals. I love these new videos. Thanks!

  • @rohangt1
    @rohangt1 Місяць тому +11

    Hey Professor,
    Thanks a lot to you again for a new integral video.
    I commented on your previous integral video about an indefinite integral which came in my class 12th Maths board exam at the year 2014.
    The problem was, I myself was unable to recall the solution to that problem. But by watching just a minute of this video, I immediately remember the entire solution and solved it again.
    If you get the solution of the indefinite integral I mentioned in my previous comment, you will find that a part of the solution which you have shown in this video applies there also.
    Some complicated integrals become so interesting that its solution remains in the mind even till a decade.

  • @TonyTheShooter
    @TonyTheShooter Місяць тому +1

    Some of the best teachers about integrals, even with english being my 2nd language I understand everything

  • @pierostephanotapiahuamani8718
    @pierostephanotapiahuamani8718 25 днів тому +5

    in the minute 11:15 , it would not be du=(1+x^(-2))dx ?

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +3

    You’re a happy person I love it!

  • @rudilapa6569
    @rudilapa6569 Місяць тому +1

    Thanks!

  • @venkateshsrao448
    @venkateshsrao448 Місяць тому

    Clean solution. Beautifully explained. ❤

  • @naimak659
    @naimak659 Місяць тому

    i like the way you say at the end, "beautiful" 💙

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +9

    Integrate[1/(1+X^4),X]=1/(2Sqrt[2])[Arc Tan[(X^2+1)/(XSqrt[2])]-Arc Tanh[(X^2-1)/(XSqrt[2])]]+C It’s in my head.

  • @Francky75
    @Francky75 Місяць тому +1

    👍👍 Explanation really clear too !

  • @ronhoffman1008
    @ronhoffman1008 Місяць тому

    Great job explaining the solution to a complex math integral.

  • @blockblend-12
    @blockblend-12 Місяць тому +4

    Hello Mr Prime Newtons, hope you're doing well, so I'm a student in a graduate school and the teacher gave us this exercise:
    (1) Let a,b and s be real numbers such that a < b and 0 < s < b-a . Prove that a number n in the Z group exists such that a < ns < b. Please can you take a look at it and maybe help me solve it please? I'll appreciate it ❤❤❤ , greetings.

    • @simcho2003
      @simcho2003 Місяць тому +2

      Try using the Archimedean property: since s > 0, there exists an integer n such that ns > a. In particular, take the smallest such integer (so that ns > a but (n-1)s a. Now we need to show ns < b. To do this, note that (n-1)s

  • @Isiah_Kiner-Falefa
    @Isiah_Kiner-Falefa Місяць тому +7

    Mr prime newtons. I am starting a revolution in my school where we are writing -C instead of +C on indefinite integrals. Would you like to join me and spread the word?

  • @mohammadjavadkhalilian4341
    @mohammadjavadkhalilian4341 Місяць тому +1

    Wonderful 😍 I love integrals very much❤
    I think actually du is equal to (x ^ 2 ) + (1 / (x ^2)) not (x ^ 2 )- (1 / (x ^2))
    Thanks ❤❤❤

  • @lalbi-x6z
    @lalbi-x6z Місяць тому +14

    why does he always do the substitutions right, but differentiate them incorrectly? 5:58, 8:08. Another type of mistake: 11:11.

    • @Taric25
      @Taric25 Місяць тому +2

      Yeah, I noticed the same thing.

    • @YohannesGetu-o3x
      @YohannesGetu-o3x Місяць тому +1

      But I don't see any mistake there

    • @Kosekans
      @Kosekans Місяць тому +2

      @@YohannesGetu-o3xis 11:11 correct? He mixed up + and - there, didn’t he? The rest is correct.

    • @YohannesGetu-o3x
      @YohannesGetu-o3x Місяць тому +1

      @@Kosekans Okay I saw it. Tnx for the illustration

    • @lalbi-x6z
      @lalbi-x6z Місяць тому

      @@YohannesGetu-o3x A differential cannot be equal to an algebraic expression by itself. For a given function y=f(x), dy is equal to; (derivative of f(x))*dx. For the second type of mistake I mentioned, he confused the plus sign for a minus sign which made for a basic mistake.

  • @sibasishpadhy9172
    @sibasishpadhy9172 Місяць тому

    We can also use trignometric substitutions

  • @panyachunnanonda6274
    @panyachunnanonda6274 Місяць тому

    Thank you, I love this VOO clip .

  • @wayneosaur
    @wayneosaur Місяць тому +1

    If you turned this into a definite integral on x in [0,1], how do you handle the fact that the solution seems undefined (division by 0). The integral I should have no problem here.

  • @singyestudio608
    @singyestudio608 Місяць тому

    12:50 Isn't it -(1/a)tanh^-1(x/a) formula? Because int{(1/(a^2-x^2)}dx=(1/a)tanh^-1(x/a)+c. Therefore as it has -ve Infront, isn't it +ve value? Or I am getting confused?

  • @SammyBaunoch
    @SammyBaunoch Місяць тому +3

    cool video! But you forgot to make it negative arctanhx because the formula is 1/(a^2-x^2) not 1/(x^2-a2). So the answer should have a plus in between the arctangent of x and the arctanh of x!

    • @singyestudio608
      @singyestudio608 Місяць тому

      Same thing. I got +ve too. I too commented on it.

  • @michelebrun613
    @michelebrun613 Місяць тому

    Very nice demonstration.

  • @zactastic4k955
    @zactastic4k955 Місяць тому +1

    Why not just substitute in sqrt(tan(theta))

  • @rakarajahadi7926
    @rakarajahadi7926 Місяць тому

    12:05 to early for change the integral from one integral to two integral, must you separate the integral first and put dx in each integral than you can change the numerator with derivatif form of denominator .
    I guest that my opinion i'm sorry if my English is bad and mispronunciation

  • @frreinov
    @frreinov Місяць тому

    Beautiful! (Besides the couple observations that have been made here)

  • @BartBuzz
    @BartBuzz Місяць тому

    Looks good. Easy to follow.

  • @Abby-hi4sf
    @Abby-hi4sf Місяць тому

    Wonderful as usual!

  • @smlateef5684
    @smlateef5684 Місяць тому

    Good Explanation

  • @luismichelcadenaorozco1484
    @luismichelcadenaorozco1484 Місяць тому

    Excelent 😊

  • @brawlpal8725
    @brawlpal8725 Місяць тому +3

    ∫1/(x²-a²)dx = -1/a arctanh(x/a)
    You have a lil wrong but good job i realy learn a lot of you keep going ❤❤

    • @lcex1649
      @lcex1649 Місяць тому

      yeah I noticed that but wouldn't that make the final integral have a "+" in between the tan and tanh inverse functions instead of a "-".

    • @brawlpal8725
      @brawlpal8725 Місяць тому

      @lcex1649 This is exactly what we are aiming for . try the derivative you will understand

  • @samsam-tg1nz
    @samsam-tg1nz Місяць тому

    This problem can be done by residues as well right?

  • @boguslawszostak1784
    @boguslawszostak1784 Місяць тому +1

    Nice trick, but I prefer factoring the denominator and then using partial fraction decomposition.

    • @henrymarkson3758
      @henrymarkson3758 Місяць тому

      He said he will be doing 3 videos using 3 different methods

    • @boguslawszostak1784
      @boguslawszostak1784 Місяць тому

      ​@@henrymarkson3758 You are absolutely right

  • @dan-florinchereches4892
    @dan-florinchereches4892 Місяць тому

    I was thinking of splitting the denominator into quadratics but the roots are easy to find
    X^4+1=0
    X^4=-1
    X^2=+-i
    X1= √2/2+i√2/2 or x2=-√2/2-√2/2i for x^2=i and
    X3=√2/2-i√2/2 and x4=-√2/2+√2/2i for x^2=-i
    Using vietas formulas and making a polynomial out if x1 and x3: x^2-√2x+1
    Making a polynomial from x2 and x4: x^2+√2x+1
    So (ax+b)/(x^2-√2x+1)-(cx+d)/(x^2+√2x+1)=1/(x^4+1)
    Equatig coefficients:
    x^3: a-c=0 => a=c
    X^2 b-d+√2a+√2c=0
    X: √2d+√2b+a+c=0
    b-d=1 => b=d+1
    1+2√2a=0 a=-√2/4
    2√2d+√2+2(-√2/4)=0
    2√2d=-√2/2
    d=-1/4
    The rest should be easy by grouping up to obtain logarithms and arctangents

  • @thevadharshan-g6d
    @thevadharshan-g6d Місяць тому +1

    Yo hi..... try using substitution of x^2=t and then again substitute 1/t^2 +1 it wil be easy

  • @nothingbutmathproofs7150
    @nothingbutmathproofs7150 Місяць тому +1

    You wrote done the wrong expression for du !!

  • @keyboardvs1737
    @keyboardvs1737 Місяць тому +1

    Substitution of "u" is right but its differentiation "du" is incorrect.

    • @Rubberman-o0O
      @Rubberman-o0O Місяць тому

      Try watching a little closer, I thought that aswell

    • @PrimeNewtons
      @PrimeNewtons  Місяць тому +4

      It was a typo

  • @jlmassir
    @jlmassir Місяць тому

    The way to arrive at the log expression for the second integral is to expand its integrand in partial fractions.

  • @SEBstantialBricks
    @SEBstantialBricks Місяць тому +1

    Why is falcon teaching math?

  • @SSRSSR2609
    @SSRSSR2609 21 день тому +1

    This is called algebraic twins methodd

  • @arthurkassis
    @arthurkassis Місяць тому

    DOING BEFORE THE VIDEO
    Using the residue method when Xi is a simple root, we firstly need to find the roots of xˆ4+1, that are e^iπ/4, e^i3π/4, e^i5π/4 and e^i7π/4, and now, we get that An = 1/4(Xn)ˆ3 by getting the derivative of xˆ4
    Therefore: A0= 1/4e^(i3π/4), A1=1/4e^(i9π/4), A2=1/4e^(i15π/4) and A3=1/4e^(i21π/4)
    So, the integral (1/xˆ4+1) dx =1/4 integral ((∑0->3)1/ (e^(i(3π/4+3πn/2))x - e^(i(π+2πn))) dx
    which is equal to 1/4 (∑0->3) ln( e^(i(3π/4+3πn/2))x-e^(i(π+2πn)) )/ e^(i(3π/4+3πn/2))

  • @toufikbk-b5o
    @toufikbk-b5o Місяць тому

    (x4 +1) = ( x2 +1 + rac 2x ) ( x2 +1 - rac2x )

  • @amoghsod2212
    @amoghsod2212 Місяць тому

    Hey , why is tye channel named prime Newton

  • @Maths786
    @Maths786 Місяць тому

    Sir please do a limit question which was came in
    JEE Advanced 2014 shift-1 question number 57
    it's a question of a limit
    lim as x-->1
    [{-ax + Sin(x-1) + a}/{x + Sin(x-1) - 1}]^[{1-x}/{1-√x}] = 1/4
    You have to find the greatest value of a
    It has 2 possible answers 0 and 2
    But I want the reason that why should I reject 2 and accept 0
    Because final answer is 0
    Please help 😢

  • @rob876
    @rob876 Місяць тому

    nice method!

  • @kabeeralishaikh1439
    @kabeeralishaikh1439 Місяць тому

    11:17 he has made a mistake. A + symbol was required, instead of - symbol

  • @omograbi
    @omograbi Місяць тому

    11:16. The is a mistake:
    u=x-1/x
    du= 1+1/x^2 dx

  • @Mk3737
    @Mk3737 Місяць тому

    11:11 Prof you missed the '+' sign in the differentiation 🫡

  • @lornacy
    @lornacy Місяць тому

    Thank you!

  • @nguyễnhữugiakhiêm
    @nguyễnhữugiakhiêm 11 днів тому

    wait, antiderivative of (1/( x^2 - a^2) ) = (1/(2a))(ln((x - a)/(x + a)), let try antiderivative of 1/ ( x^2 - 1)

  • @wayneosaur
    @wayneosaur Місяць тому

    du = (1 + 1/x^2) dx (sign correction)

  • @ExatasOnDrGuT
    @ExatasOnDrGuT Місяць тому

    Radical Racional

  • @thangta1653
    @thangta1653 Місяць тому

    thầy giải hộ em nguyên hàm của 1/x^8+1 vs

  • @ThePayner11
    @ThePayner11 Місяць тому

    I tried to integrate 1/(x^5 + 1) but it's so difficult!

  • @CHI_Pompeyo4
    @CHI_Pompeyo4 21 день тому

    Starting from x^3 = t, dx = dt/3x^2 would be much easier

  • @NashonStem-um5in
    @NashonStem-um5in Місяць тому

    May you please make a video of the Fibonacci sequence

  • @Unknow5622-b1g
    @Unknow5622-b1g Місяць тому +2

  • @huseyinbaysal3743
    @huseyinbaysal3743 Місяць тому

    İkinci bölüm hatalı çözüm,dikkat

  • @radzelimohdramli4360
    @radzelimohdramli4360 Місяць тому

    why cant use (1+x^2)^2 - 2x?

  • @entertainmentzone6838
    @entertainmentzone6838 Місяць тому

    Use logarithm

  • @CalculusIsFun1
    @CalculusIsFun1 Місяць тому

    You made a slight error. The hyperbolic tangent should be negative because integral of 1/(x^2 - a^2) is actually -(1/root(a))tanh^-1(x-root(a)).
    That tanh^-1 term should be positive.

  • @sergioUSSR1964
    @sergioUSSR1964 Місяць тому

    Знание сила

  • @MrGeorge1896
    @MrGeorge1896 Місяць тому

    First thing that comes to my mind would be partial fraction decomposition using the well known identity
    x⁴ + 1 = (x² + √2 x + 1) (x² - √2 x + 1) so that
    1 / (x⁴ + 1) = [ (√2 x + 2) / (x² + √2 x + 1) + (- √2 x + 2) / (x² - √2 x + 1) ] / 4

    • @robertveith6383
      @robertveith6383 Місяць тому

      It is not "well-known" identity, but do go that route.

    • @boguslawszostak1784
      @boguslawszostak1784 Місяць тому

      @@robertveith6383 x^4-1=x^4+2x^2+1-2x^2=(x^2+1)^2-2x^2= (x^2+1)^2-(sqrt(2)x)^2

  • @YusufuDaudaKanu
    @YusufuDaudaKanu Місяць тому

    Why can't you change you username? You need to make your own name.

  • @chbengtan7266
    @chbengtan7266 Місяць тому

    Too much talking.