Russian Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods

Поділитися
Вставка
  • Опубліковано 1 січ 2025
  • Russian Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods
    MY OTHER CHANNELS
    ••••••••••••••••••••••••••••••••
    Calculus Booster : / @calculusbooster
    Math Hunter : / @mathshunter
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

КОМЕНТАРІ •

  • @spacer999
    @spacer999 6 місяців тому +1

    Just draw a line from A to F s.t. BAF is 60 deg. It is simple to see that FDC is a right angle triangle in a circle with diameter FC and center at E. That means ED=EC and angle theta = angle C = 15 deg.

  • @ekoi1995
    @ekoi1995 13 днів тому

    triangle DEC is an isoceles triangle.
    DE = EC, so ∠EDC = ∠ECD
    ∠ECD = 180-90-75=15 which is also theta
    theta = 15

  • @mibmib4414
    @mibmib4414 2 місяці тому

    It is known that in such a right-angled triangle, the hypotenuse is four times the length of the altitude to the hypotenuse (DB=2*altitude). From this, it can be quickly seen that the CED triangle is isosceles (this immediately follows by drawing a perpendicular from E). Therefore, the angle in question is 15°.

  • @SuperPassek
    @SuperPassek 7 місяців тому +2

    Interesting solutions.
    Another solution: Let H be a point on BC s.t. DH ⊥ BC. Then CDH = 75 and DH = (1/2)AB.
    As tan 75 = 2 + √3, HC = (2 + √3) DH. From CE = 2 DH, we get HE = √3 DH, which means EDH = 60. So EDC = 15

  • @jimlocke9320
    @jimlocke9320 7 місяців тому

    As in the video, let length AB = CE = b and AD = CD = a, therefore CA = 2a. Construct a line segment AF such that F is on BC and

  • @epsom2024
    @epsom2024 3 дні тому

    make △ABF≡CED =>∠DAF=60° => DA=DF=DC => ∠AFC=90°=∠ABC => θ=∠AFB=∠ACB=15°

  • @Irtsak
    @Irtsak 7 місяців тому

    Let BD the median in triangle ABC and EP⊥AC (construction)
    Let AD=DC=x and AB=EC=y
    In orthogonal triangle ABC, BD is median => BD=AD=DC =x => triangle ABD is isosceles => ∠BAD= ∠ABD =75°. So ∠ADB=30°
    When the angle of a right triangle is equal to 30°, remember that the length of opposite side is always equal to half of the length of the hypotenuse. => *AE=x/2* (1)
    Orthogonal triangles ABE=EPC (cause AB=EC=y and ∠ABE= ∠PEC=75°)
    So PC=AE => PC=x/2 cause (1)
    Although DP=DC-PC=x-x/2=x/2 => DP=x/2 .

  • @ducduypham7264
    @ducduypham7264 7 місяців тому

    From B draw a line perpendicular to AC that intersect AC at H. Because ABC is right triangle with hypotenuse AC and angle BAC=75° so AC=4BH. Additionally AC=2DC as D is midpoint of AC, then DC=2BH. Construct point B' so that H is midpoint of BB'. Triangle ABB' congruent to triangle ECD (side-angle-side) as AB=EC, angle ABB'=angle ECD=15° (because both angle ABB' and angle DCE are complementary angles of angle HBC), BB'=DC=2BH. Therefore theta=angle EDC=angle AB'B. We can easily prove that triangle ABB' is isosceles triangle with base BB' so angle AB'B=angle ABB'=15°. In conclusion theta=15°

  • @alexbayan8302
    @alexbayan8302 7 місяців тому +1

    Draw a line AF so that the angle BAF is 60 degree. If AB is a, AF is 2a and FC is 2a. Then FE=CE. Since AD=CD too, triangles AFC and DFC are similar. So angle CDE is the same as FAC. Since the triangle FAC is isosc, angles CDE = FAC = FCA = 15 degree.

    • @alexbayan8302
      @alexbayan8302 7 місяців тому

      I wrote a lot to explain the reasoning process but an experienced solver will see the relation instantly. Just draw AF and the rest is seen instantly.

    • @purnajinananandaavadhuta8605
      @purnajinananandaavadhuta8605 4 місяці тому

      Very nice. E is mid point of FC. D is mid point of AC. So DE is half of AF, DE is a and triangle DEC is isosles and hence angle CDE is 15 degree.

  • @sergeyvinns931
    @sergeyvinns931 6 місяців тому

    Из точки D,описываем окружность, из точки С, на окружности засекаем точку. отстоящую от С на расстоянии АВ=СЕ,
    и соединяем эту точку К, с точкой D, Получим треугольник CKD, который равен треугольнику АВD, DE продлеваем до пересечения с СК в точке М, и видим, что DM является биссектрисой, медианой и высотой треугольника CKD, и угол тета, равен половине угла АВD, Который равен углу СDK, и равен 15 градусов.

  • @giuseppemalaguti435
    @giuseppemalaguti435 7 місяців тому +1

    ctgθ=1/2(sin15)^2-ctg15=2+√3...θ=15

  • @shadrana1
    @shadrana1 Місяць тому

    This is a standard 75,15,90 triangle.
    AC=2sqrt2,AD=DC=sqrt2,BC=(sqrt3 +1),AB=EC =(sqrt3 -1),BE=AB-EC=(sqrt3 +1)-(sqrt3 -1)=2.
    sin75=cos15= (sqrt3 +1)/2sqrt2,
    cos75=sin15= (sqrt3 -1)/2sqrt2,
    tan75=cot15=(sqrt3 +1)/(sqrt3 -1),
    cot75=tan15=(sqrt3-1)/(sqrt3+1).
    BE=BC-EC=(sqrt3+1)-(sqrt3-1)=2.
    If you join B and D you have AD=DC=BD and the problem is easy from there.
    It helps to know the methods of finding the trig. ratios of angles that are multiples of 3 degrees in surd form.
    Thanks for the problem professor.

  • @Ml-sy6uo
    @Ml-sy6uo 7 місяців тому

    We can have AM so that M is on BC and

  • @МуслимИсмаилов-о3э
    @МуслимИсмаилов-о3э 7 місяців тому

    Достраиваем до квадрата со стороной равной ВС. А потом внутри квадрата строим равносторонний треугольник со стороной равной стороне квадрата с вершиной на точке D и дальше решается очен просто.

  • @michaeldoerr5810
    @michaeldoerr5810 7 місяців тому

    I thought that the first method kind showed how trig identifies can be used in relation to the cotangent function. Also for the second method, if there was a congruence postulate for the two pairs of congruent triangles, it would be SAS. I could be wrong and I shall make this practice for geometry.

  • @zdrastvutye
    @zdrastvutye 6 місяців тому

    to find the angles, draw a line in D that is parallel to line BC:
    10 vdu5:for a=0 to 15:gcola:print a;:next a:vdu0:gcol8:@zoom%=@zoom%*1.4
    20 print "mathbooster-russian math olympiad-a very nice geometry problem"
    30 dim x(1,2),y(1,2):la=1:w1=75: sw=.1:wth=sw:goto 60
    40 w2=90-w1:w3=wth+w2:w4=180-w3:lbu=la*sin(rad(wth))/sin(rad(w4))
    50 l2=2*la*cos(rad(w1)):dg=l2/lbu:dg=dg-1:return
    60 gosub 40
    70 dg1=dg:wth1=wth:wth=wth+sw:gosub 40:wth2=wth:if dg1*dg>0 then 70
    80 wth=(wth1+wth2)/2:gosub 40:if dg1*dg>0 then wth1=wth else wth2=wth
    90 if abs(dg)>1E-10 then 80
    100 print "der gesuchte winkel="; wth;"°"
    110 x(0,0)=0:y(0,0)=0:x(0,1)=2*la*sin(rad(w1)):y(0,1)=0:x(0,2)=0:y(0,2)=l2
    120 x(1,0)=x(0,1)-l2:y(1,0)=0:x(1,1)=x(0,1):y(1,1)=0:x(1,2)=x(0,1)-la*cos(rad(w2))
    130 y(1,2)=la*sin(rad(w2)):masx=1200/x(0,1):masy=850/l2
    140 if masxathbooster-russian math olympiad-a very nice geometry problem
    der gesuchte winkel=15°
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @markwu2939
    @markwu2939 6 місяців тому

    ∠ECD =15°. Let's take EC=1. Then AD=BD=CD=0.5csc15°.
    In ΔCDE, we know that EC/sinθ = CD/sin(θ+15°), i.e. 1/sinθ = 0.5csc15°/sin(θ+15°) = 2cos15°/sin(θ+15°).
    Here I change 0.5 to sin30°, and sin30°csc15°=2cos15°.
    Then we get sin(θ+15°)/sinθ=2cos15°.
    Because sin(θ+15°)=sinθcos15°+cosθsin15°, sin(θ+15°)/sinθ=cos15°+cotθsin15° = 2cos15°.
    Finally, we get cotθ = cos15°/sin15° = cot15°, i.e. θ = 15°.

  • @JPTaquari
    @JPTaquari 5 місяців тому

    I found the angle = 15º
    What I did, I estimated a value for the height AB in 4 units, knowing the value of the angle of 15º
    I discovered the value of the Hypotenuse of triangle AC at 14.4559;
    Drawing a straight line at 90º from the segment AB to point E, I created two triangles that, according to calculations, are equal, therefore, points D and C have the same value of their angles, 15º
    Bingo from Brazil!

  • @sinsn2147
    @sinsn2147 7 місяців тому

    Let P on BE so that PAB=60 deg
    Thus, AP=2AB
    Also, PAC=PCA=15 deg, so AP=PC=2AB=CE+EP=AB+EP
    => EP=AB
    CD/CE=CA/CP, finding that ΔCED is similar to ΔCPA
    EDC=PAC= 15 deg

  • @wasimahmad-t6c
    @wasimahmad-t6c 11 днів тому

    15/52.5/12.5)(x=52.5

  • @arulbiswas1260
    @arulbiswas1260 7 місяців тому

    using cos(a-b) formula would have been much easier.

  • @wasimahmad-t6c
    @wasimahmad-t6c 11 днів тому

    75-22.5=52.5

  • @mjtunstall1976
    @mjtunstall1976 4 місяці тому

    advanced trigonometry i guess?

  • @devondevon4366
    @devondevon4366 7 місяців тому

    15 degrees

  • @簡欽慧
    @簡欽慧 2 місяці тому

    太複雜了

  • @comdo777
    @comdo777 7 місяців тому

    asnwer=15 isit

  • @professorrogeriocesar
    @professorrogeriocesar 7 місяців тому

    Difícil.