Factoring a thirteenth degree polynomial.

Поділитися
Вставка
  • Опубліковано 4 січ 2025

КОМЕНТАРІ • 72

  • @chrissekely
    @chrissekely 4 роки тому +28

    For this to work, you would have to know ahead of time that a factor of (x^3 - 1) would be a factor of the initial expression. And how could you possibly know that in advance? I would like to see a video explaining why you made that seemingly arbitrary decision at the beginning.

    • @SyberMath
      @SyberMath  4 роки тому +15

      Good point, Chris! I'm planning to make a video explaining these types of expressions.

    • @師太滅絕
      @師太滅絕 3 роки тому +2

      @Chris Sekely
      I agree with Chris Sekely, Isn't this a "saw the answer and come up with a solution" type? Who in exam or competition will think of adding a x^10 ???

    • @razor-xn2ve
      @razor-xn2ve 3 роки тому +3

      The fundamental idea is that cube roots of unity satisfy this property of x^2+x+1=0
      The polynomial in the expression can be reduced to this form . If you do a little manipulation.
      Difficult for me to write this here

    • @rajkumarbajagain5392
      @rajkumarbajagain5392 3 роки тому

      ya I am also thinking how to get the idea that there is a factor of x^3-1?

    • @razor-xn2ve
      @razor-xn2ve 3 роки тому +1

      @@rajkumarbajagain5392
      You should study the properties of complex roots of unity .
      They follow this x^2+x+1=0
      If you study any book which treats complex numbers in a little detail.
      You will start realising these instantly

  • @kinshuksinghania4289
    @kinshuksinghania4289 3 роки тому +9

    Most equations of the form x^(n+2) + x^n + 1 = 0 and x^(n+1) + x^n + 1 = 0 can be reduced by considering x³ = 1

  • @stevexie2705
    @stevexie2705 3 роки тому +7

    I like how the terms in the 2nd factor have alternating signs. Anyone else noticed that?

  • @akramkhanafridi1755
    @akramkhanafridi1755 2 роки тому +2

    Well Done Young man. You are real Professor of Algebraic Techniques. You have all the skills to train even dummies. I solute you, I am always benefitted from your excellent skills. Thanks

    • @SyberMath
      @SyberMath  2 роки тому

      Wow, thanks for the compliment! 🤩🧡

  • @XpeHo3aBp
    @XpeHo3aBp 3 роки тому +4

    Done this in my mind a lot quicker: x^13+x^11+1=x^11*(x^2+x+1)-(x^12-1)=x^11*(x^2+x+1)-(x-1)(x^11+x^10+...+1)=x^11*(x^2+x+1)-(x-1)*(x^2+x+1)(x^9+x^6+x^3+1)
    Watched the video hoping to see how the remaining 11th power polynomial is factored, but it's...not.
    Upd: can be done even easier literally in 2 seconds. In order to be divisible by x^2+x+1 a polynomial obviously has to have equal summs of coefficients of powers with the same power mod 3, i.e.:
    a0+a3+a6+...=a1+a4+a7+...=a2+a5+a8+..., which is easily verifiable in this case.

  • @Kdd160
    @Kdd160 4 роки тому +2

    Happy 700 subs!!! YAY

    • @SyberMath
      @SyberMath  4 роки тому +3

      Thanks to you and all the great people that keep watching!!!

    • @babitamishra524
      @babitamishra524 3 роки тому

      @@SyberMath man you are bringing up awesome teasers ,you are actually great ,making days great for me

  • @sberacatalin2250
    @sberacatalin2250 2 роки тому +1

    Frumos! Calcul bine aranjat si muncit! Next!?

  • @vishpkind
    @vishpkind 3 роки тому +2

    Superb explanation 👍

  • @michoug09
    @michoug09 2 роки тому +3

    faster method : P(j)=j^13+j^11+1=j+j²+1=0
    P(j²)=P(conj(j))=0 Factorise with (x-j)(x-j²)=x²+x+1
    then divide P(x) by x²+x+1 to obtain other factor

  • @Modemon57
    @Modemon57 3 роки тому +3

    6:52, why not extract x^2 at the same time?

  • @mohamedbrahim8757
    @mohamedbrahim8757 2 роки тому +3

    Why didn’t you go for one step and substructure x : x^4-x? You would get directly x^2+x+1 instead of x^4+x^2+1and the common factor with x^3-1 would show up immediately.

  • @jarikosonen4079
    @jarikosonen4079 2 роки тому +1

    What about the rest (the 11th deg polynomial)?
    It looks factoring == to break it down into product of 1st and 2nd degree polynomials.
    This is factoring by grouping and looks very difficult to handle.

  • @leonhardeuler5211
    @leonhardeuler5211 4 роки тому +5

    This is a tough polynomial!

    • @SyberMath
      @SyberMath  4 роки тому

      Yes indeed!

    • @SyberMath
      @SyberMath  4 роки тому +1

      Problem fixed. Re-recorded:
      ua-cam.com/video/TYqmZRo0gCc/v-deo.html

    • @leonhardeuler5211
      @leonhardeuler5211 4 роки тому

      @@SyberMath Great. Thanks!

  • @SuperYoonHo
    @SuperYoonHo 2 роки тому +1

    eek when i saw this i so much freaked out it looks gigantic and scary! but you are so cool you froze it.

  • @shanmugasundaram9688
    @shanmugasundaram9688 4 роки тому +2

    This is a clever factorization problem.

  • @師太滅絕
    @師太滅絕 3 роки тому +1

    Is this a "saw the answer and come up with a solution" type? Who in exam or competition will think of adding a x^10 ???

    • @SyberMath
      @SyberMath  3 роки тому

      There's a reason why this works

  • @BP-gn2cl
    @BP-gn2cl 3 роки тому +1

    Good one

  • @Alians0108
    @Alians0108 3 роки тому +5

    I swear to god, x^a + x^b + 1 HAS to be divisble by x^2+x+1. Happened too many times.

    • @SyberMath
      @SyberMath  3 роки тому +6

      There's a secret behind it! I'll explain that later! 😁

    • @MizardXYT
      @MizardXYT 3 роки тому

      x^(3*n+1) + x^(3*n-1) + 1 = (x² + x + 1)*(x^(3*n-1) + (1 - x)*(sum(x^(3*k), k = 0..n-1)))
      n = 4 gives
      x¹³ + x¹¹ + 1 = (x² + x + 1)*(x¹¹ + (1 - x)*(1+x³+x⁶+x⁹)) = (x² + x + 1)*(x¹¹-x¹⁰+x⁹-x⁷+x⁶-x⁴+x³-x+1)

    • @bobbydey9359
      @bobbydey9359 3 роки тому

      @@MizardXYT it's more general than that. Consider ω, a cube root of unity. So long as a and b are different non-zero residues mod 3, it will work (by factor theorem).

    • @pietergeerkens6324
      @pietergeerkens6324 2 роки тому

      @@SyberMath Did you do this yet? I haven't spotted it.

    • @SyberMath
      @SyberMath  2 роки тому +1

      @@pietergeerkens6324 Not yet. Thanks for the reminder!

  • @aliasgharheidaritabar9128
    @aliasgharheidaritabar9128 3 роки тому +1

    So great.

  • @XLatMaths
    @XLatMaths 2 роки тому +1

    This video is a great example of "Just because you can, doesn't mean you should".

  • @kaslircribs5804
    @kaslircribs5804 3 роки тому

    Excellent!

  • @hehnfrederic6849
    @hehnfrederic6849 Рік тому

    Just apply x11 =a
    Then a2+ a+1 = 0

  • @krishnannarayanan5252
    @krishnannarayanan5252 3 роки тому

    x muliplied by xto the power 8 is equal to x to the power 8, well done : then u correct is showing you in poor light

  • @robyzr7421
    @robyzr7421 2 роки тому

    more scareful than " Shining " movie ... 🙃

  • @bollyfan1330
    @bollyfan1330 2 роки тому

    You solved it but did not explain why you did what you did.

  • @leecherlarry
    @leecherlarry 3 роки тому +2

    feels like cheating hehe:
    *Factor[x^13 + x^11 + 1]*

    • @SyberMath
      @SyberMath  3 роки тому

      Yessssss! 😠😳😂

  • @barakathaider6333
    @barakathaider6333 2 роки тому

    👍

  • @pe3akpe3et99
    @pe3akpe3et99 3 роки тому

    you are insane

    • @SyberMath
      @SyberMath  3 роки тому +1

      That's so true! 😲😂