Solving an Undecic Polynomial Equation

Поділитися
Вставка
  • Опубліковано 2 жов 2024
  • This video is about a rational equation that can be solved with an algebraic trick.
    Follow me: / sybermath
    Subscribe!!!: www.youtube.co...
    Polynomial expressions,difference of squares,algebra,algebraic equations,SyberMath,algebraic manipulations,equations,substitution,Challenging Math Problems,Non-routine Math Problems,polynomial equations,algebraic identities,non-standard methods,math,maths,mathematics,Polynomial equations,an algebraic challenge,cubic equations,A challenge in algebra.,This video is about a rational equation that can be solved with an algebraic trick.,Solving an equation in 11th power!

КОМЕНТАРІ • 128

  • @SyberMath
    @SyberMath  3 роки тому +42

    The equation looks scary first but then it slowly unfolds. Don't be discouraged just because something looks intimidating.

  • @luggepytt
    @luggepytt 3 роки тому +49

    I did what you said would not work - dividing numerator and denominator by x - and it worked quite well!
    We get (x¹⁰+1)/(x⁶+x⁴) = 206/16
    We have only even powers of x, so substitute y=x²
    (y⁵+1)/(y³+y²) = (y⁵+1)/(y²(y+1)) = 205/16
    Notice that y⁵+1 = (y+1)(y⁴-y³+y²-y+1) (This works for any odd power plus one)
    ( y+1)(y⁴-y³+y²-y+1)/(y²(y+1)) = 205/16
    Cancel out (y+1)
    (y⁴-y³+y²-y+1)/y² = 205/16
    Divide through by y²
    y²-y+1-y⁻¹+y⁻² = 205/16
    Now substitute u = y+y⁻¹
    Then we get u² = y²+2+y⁻² => y²+y⁻² = u²-2
    So we get
    u²-2+u+1 = 205/16
    Collect all terms to one side
    u²+u-221/16 = 0
    Solve for u
    u = 17/4 or u = -13/4
    Solve for y
    y+y⁻¹ = 17/4 = 4¼ => We see directly that the solutions are y = 4 and y = ¼
    y+y⁻¹ = -13/4 => y = (-13±sqrt(105)) / 8 These two roots are negative
    Solve for x, where y = x²
    y = 4 => x = ±2
    y = ¼ => x = ±½
    The negative y values yield no real solutions for x
    And that's it!

    • @SyberMath
      @SyberMath  3 роки тому +11

      Nice!

    • @050138
      @050138 3 роки тому +3

      Awesome formatting!

    • @italixgaming915
      @italixgaming915 3 роки тому +3

      I had a similar idea that led to the same end:
      (x^11+x)/(x^7+x^5)=(x^5+1/x^5)/(x+1/x) (we divide everything by x^6).
      After that we notice that if x=-1/x, x^5=-1/x^5. Therefore we know that we can factorise by (x+1/x).
      x^5+1/x^5=(x+1/x)(x^4-x²+1-1/x²+1/x^4)
      Our equation becomes: x^4-x²+1-1/x²+1/x^4=205/16.
      If y=x² we have: y²-y+1-1/y+1/y²=205/16. (1)
      (y+1/y)²=y²+1/y²+2
      Then (1) (y+1/y)²-(y+1/y)-1=205/16
      If z=y+1/y then (1) z²-z-221/16=0.
      Delta=1+221/4=225/4=(15/2)²
      The solutions are 17/4 and -13/4.
      After that we have to solve:
      y+1/y=17/4 (2) and y+1/y=-13/4 (3)
      (2) y²-17/4.y+1=0
      Delta=289/16-64/16=(15/4)²
      The solutions of (2) are (17/4-15/4)/2=1/4 and (17/4+15/4)/2=4.
      (3) y²-13/4.y+1=0
      Delta=169/16-64/16=105/16=(sqrt(105)/4)²
      The solutions of (3) are (-13+sqrt(105))/8 and (-13-sqrt(105))/8
      Finally, for each solution of (2) and (3) we have to solve x²=y.
      For the solutions of (3) we obtain 1/2, -1/2, 2 and -2.
      For the solutions of (4) we have negative values so we have complex solutions: i.sqrt(2)/4.sqrt(sqrt(105)-13)), -i.sqrt(2)/4.sqrt(sqrt(105)-13)), i.sqrt(2)/4.sqrt(sqrt(105)+13)) an -i.sqrt(2)/4.sqrt(sqrt(105)+13)).

    • @mariomestre7490
      @mariomestre7490 2 роки тому

      molt be

    • @kaveemmeer7473
      @kaveemmeer7473 2 роки тому

      Solid......bro.👍

  • @xiaoshou6752
    @xiaoshou6752 3 роки тому +9

    My take on the quartic equation at 12:10:
    16u^4 - 80² - 125 = 0
    => (4u²)² - 20(4u²) - 125 = 0
    If we let t = 4u²:
    => t² - 20t - 125 = 0
    Using the method used by 3B1B in his first episode of Lockdown Math (ua-cam.com/video/MHXO86wKeDY/v-deo.html), we can easily solve this quadratic equation:
    m = -20/2 = 10 and d = sqrt(10² - (-125)) = sqrt(225) = 15,
    and thus:
    t = m +- d = 10 +- 15 => t = 25 or t = -5
    As t = 4u² which is positive, the last solution can be discarded.
    Finally:
    t = 4u² = 25 => u² = 25/4 => u = +- 5/2
    What do you think? I think the procedure you came up with was rather lengthy and not something I'd be able to see myself.

  • @golddddus
    @golddddus 3 роки тому +11

    If ax^2 + bx + c = 0 and b is even, there is special formula: x = (-b/2 ± SQRT(b/2-ac))/a. So y = (40 ± SQRT(40^2 +16*125))/16

  • @TheHarryMateuszYT
    @TheHarryMateuszYT 3 роки тому +17

    Actually with this method you can find all of ten solution (as this equation is tenth-degree, because we exclude x=0), because from x+1/x=0 you have i and -i as solution, and from u^2=-40/32 you have another four complex solution)

    • @megauser8512
      @megauser8512 2 роки тому +1

      Nice!

    • @aaronrashid2075
      @aaronrashid2075 2 роки тому

      But if we put i or -i back in the original equation, you don’t get 205/16. So that Dan not necessarily be a solution. Also he put real solutions in the thumbnail anyway so. Correct me if I’m wrong

    • @kfjfkeofitorhf9520
      @kfjfkeofitorhf9520 Рік тому

      -40/32=
      -5/4

  • @satyapalsingh4429
    @satyapalsingh4429 3 роки тому +1

    Heart filled with joy . Interesting method of solving .God bless you!

  • @calmeilles
    @calmeilles 2 роки тому +1

    And if you graph (16(x¹¹+x)/(x⁷+x⁵))-205=y you get a somewhat eccentric curve nicely crossing the y=0 line at x={-2;-0.5;0.5;2}

  • @christianthomas9863
    @christianthomas9863 2 роки тому +1

    before following the video for the solutions, I tried some values for x. for x=2 , then: x**7 +x **5 = 160 . and x**11 + x**1 = 1050; so 1050/160 = 105/16 therefore x=2 is a solution. Likewise, remembering another similar problem from another site, I tried x= 1/2, and after some basic operations , there came thee same result. so I got 2 solutions: x=2 and x=1/2. anyway it could cost time to find out whether these are the only two solutions.

  • @XJWill1
    @XJWill1 3 роки тому +3

    No tricks other than factorization and the rational root theorem are required to solve that equation. Begin by canceling out an X from numerator and denominator to get
    (X^10 + 1) / (X^4 * (X^2 + 1))
    and then notice that X^10 + 1^10 factors as (X^2 + 1^2)*(X^8 - X^6 + X^4 - X^2 + 1) which is immediately obvious if you remember that A^5 + B^5 factors as (A + B)*(A^4 - A^3*B + A^2*B^2 - A*B^3 + B^4) after you rewrite X^10 + 1 = (X^2)^5 + 1^5
    Now X^2 + 1 cancels in the numerator and denominator, leaving
    (X^8 - X^6 + X^4 - X^2 + 1) / X^4 = 205/16
    But we can substitute Y = X^2 and rearrange to standard form to get
    16*Y^4 - 16*Y^3 - 189*Y^2 - 16*Y + 16 = 0
    which could be further reduced with the right trick but I prefer to avoid tricks unless necessary. Not necessary here since the rational root theorem gives us plus/minus 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16 to try. It turns out that Y = 4 and Y = 1/4 are roots, so that factors to:
    (Y - 4)*(4*Y - 1)*(4*Y^2 + 13*Y +4) = 0
    The quadratic does not have any positive roots, and since X = sqrt(Y), the solutions we get are sqrt(4) and sqrt(1/4) or 2 and 1/2.

  • @YossiSirote
    @YossiSirote 3 роки тому +3

    What you do looks like magic. I would appreciate much more if you motivated what lead you down this path. It was not an obvious approach at all from where I am sitting.

  • @-basicmaths862
    @-basicmaths862 3 роки тому

    After rewrite above equation as
    (x^10+1)/(x^6+x^4)=(205k/16k)
    From this We get 2equations
    First x^10+1=205k
    x^6+x^4=16k
    x^4(x^2+1)=16k
    From second equation
    We have x is even and k is odd.

  • @ChavoMysterio
    @ChavoMysterio 3 роки тому

    (x^11+x)/(x^7+x^5)=(205/16)
    16(x^11+x)=205(x^7+x^5)
    16x^11+16x=205x^7+205x^5
    16x^11-205x^7-205x^5+16x=0
    x(16x^10-205x^6-205x^4+16)=0
    x=0 is an extraneous solution since the denominator contains the variable x. That's as far as I can go.

  • @davidseed2939
    @davidseed2939 3 роки тому +1

    At 1:18 dividing by x is ok. (X^10+1 )/(x^6+x^4} = 205/16=A
    . (X^10+1 ) =A (x^6+x^4} divide by x^5
    x^5+1/x^5 = A ( x + 1/x)= Au. and as before, x^5+1/x^5 =u^5 - 5u^3+5u=Au
    y^2 -5y =A-5= 25/16

  • @davidseed2939
    @davidseed2939 3 роки тому +1

    At 12:15 y=4u gives y^2 -20y-125=0 which makes it easier to spot factors of 5 and 25
    Giving (y-25)(y+5)=0 So, 4u^2 = 25,-5. By the way it would be good if you could freeze the top right corner of the frame so you could keep the question and substitutions and lemmas.

  • @michaelempeigne3519
    @michaelempeigne3519 3 роки тому +4

    16y^2 - 80y - 125 = 0
    The equation would need to have two numbers that are 20 apart which are 25 and 5 and the larger would have to be negative, provided that 16 has a perfect square root. This yields:
    (4y - 25 ) ( 4y + 5 ) = 0

    • @SyberMath
      @SyberMath  3 роки тому +3

      Good thinking!

    • @michaelempeigne3519
      @michaelempeigne3519 3 роки тому +2

      @@SyberMath i am glad that you approve.

    • @SyberMath
      @SyberMath  3 роки тому +3

      You can also do the following: Multiply 16 by -125 to get -2000. Find two numbers whose product is -2000 and whose sum is -80. Those numbers are -100 and 20. Then write 16y^2 - 80y - 125 = 0 as 16y^2 - 100y + 20y - 125 = 4y(4y - 25) + 5(4y - 25) = (4y - 25)(4y + 5) = 0

    • @michaelempeigne3519
      @michaelempeigne3519 3 роки тому +1

      @@SyberMath very nice but it is difficult to fond factors of large numbers like that

    • @michaelempeigne3519
      @michaelempeigne3519 3 роки тому +1

      @@SyberMath also i found formula based on a, b, and c values of quadratic equation that will give the two numbers to multiply to one number and add to another.
      if ax^2 + bx + c = 0 then the two numbers are :
      [ b + sqrt ( b^2 - 4ac ) ] / 2 and
      [ b - sqrt ( b^2 - 4ac ) ] / 2

  • @ninavoron12
    @ninavoron12 3 роки тому +1

    It is logical to check equality if the denominators are the same, x^5=16x. Obviously, 2 and -2 are roots. Since x and 1 / x have equal rights in the formula, 1 / x = ± 2 are also roots. However, other roots need to be explored and this is not so fast. I used factorization. Knowing the roots makes the task easier.

  • @tgx3529
    @tgx3529 3 роки тому

    LS=(x^10+1)/(x^4*(1+x^2))=((x^2)^5+1)/((1+x^2)*x^4).There Is substitution y=x^2. Then( (y^5+1):(y+1))=(y^4-y^3+y^2-y+1=x^8-x^6+x^4-x^2+1. We have then
    LS=x^4-x^2+1-1/x^2+1/x^4, there is geometr series So (1/x^6+1):(1/x^2+1)=205/16. After substitution 1/x^2=z we have (z^3+1):(z+1)=205/16, So z^2-z+1=205/16

  • @KayraAktepe
    @KayraAktepe Рік тому

    Aslında x^2=a dönğşümünden sonra
    hiçbir şey kalmıyor.

  • @johnstanley5692
    @johnstanley5692 Рік тому

    Here is a better trick:
    Define Z(n):= X^n + X^(-n); (Z(o) = 2)
    Z(n) satisfies recursion formula:
    Z(n+1) = Z(n)*Z(1) - Z(n-1); ( Also (Z(2n) = Z(n)^2 - Z(o))...(i)

    Problem
    125/16 = (x^11 + x)/(x^7 +x) = Z(5)/Z(1) (i.e just divide by x^6)
    from recursion formula (i)
    Z(5)/Z(1) = Z(1)^4 - 5*Z(1)^2 +5 = 125/16 ...(ii)
    Solving (ii) gives Z(1)=5/2, Z(5)= 1025/32 (=(125/16)*Z(1))
    For info [Z(1)..Z(5)] = [5/2, 17/4, 65/8, 257/16 1025/32]

  • @honestadministrator
    @honestadministrator Рік тому

    A bit of work gives
    (x^5 + 1/x^5) /(x+ 1/x) = 205/16
    Again (x^2 + 1/x^2) = (x+1/x) ^2 -2
    & (x^3 + 1/x^3) = (x+1/x)^3 -3(x+1/x)
    Multiplying these two identities:
    x^5 + 1/x^5 + x + 1/x equals to
    (x+1/x)((x+1/x) ^2 -3)((x+1/x) ^2 -2)
    Therefore
    (x^5 + 1/x^5) /(x+ 1/x)
    =((x+1/x)^2 -3)((x+1/x)^2 -2) -1
    = u^2 - 5u +5
    Here in u represents (x+1/x)^2
    Hereby given equation becomes
    u^2 - 5u = -5 + 205/16
    or 16 u^2 - 80 u -125 = 0
    or (4u - 25)(4u + 5) = 0
    case 1 : (x+1/x) ^2 = u = 25/4
    or (x+1/x -5/2) (x+1/x +-5/2) = 0
    or (2x^2 -5x +2) (2x^2 -5x +2) = 0
    or (2x -1) (x-2) ( 2x+1) (x+2) = 0
    or x = -2, -1/2, 1/2, 2
    Case 2 : (x+1/x) ^2 = u = -5/4
    or x^2 + 1/x^2 = - 13/4
    or 4 x^4 + 13* x^2 + 4 = 0
    No solution in real domain

  • @CaradhrasAiguo49
    @CaradhrasAiguo49 2 роки тому

    Eyeballed the original rational equation, the top looked suspiciously like 2050 = 2048 + 2 = 2^11 + 2, and indeed that is a solution. Then x = -2 is immediately also a solution either by
    1) the fact the rational expression has all odd powers in both numerator / denominator, means it will have a -1 in both numerator / denominator.
    2) cross-multiplying and dividing by x (x = 0 is inadmissible solution), then using the fact the resultant polynomial 16x^10 − 205x^6 − 205x^4 + 16 has only even powers.
    x = ±1/2 as a guess from the Rational Root Theorem is easy to verify as a root, and dividing by (x^2 − 4)(4x^2 − 1) leads to yet another symmetric polynomial 4x^6 +17x^4 + 17x^2 + 4 which can be reduced to 4z^3 +17z^2 +17z + 4 (which has z = −1 as a root) by substituting z = x^2.
    From the above the complex roots are ±i, ± i /(2 sqrt(2)) * sqrt(13 ± sqrt(105)), the latter just being a shorthand to write 4 roots as it leads to (+, +) (+, −) (−, −) (−, +), where the first part of the tuple is the sign of i, and the second is the sign of sqrt(105)
    Definitely one of the neatest 10th or 11th-degree polynomials out there!

  • @Bjowolf2
    @Bjowolf2 2 роки тому

    Wow, impressive 😉
    So were you able to see in advance that this method would actually work, or was it just hard work a la " just try it and see what happens?" - or just sheer luck? 🤔😂

  • @bosorot
    @bosorot 2 роки тому

    pull x out . then multiple every terms will get 16x^10-205x^6-205x^4+16 =0 . Set u= X^2 . factor out will get (u+1)(u-4)(4u-1)(4u^2+13u+4) =0
    u can be only 4 and 1/4 . done

  • @salamander5703
    @salamander5703 Рік тому

    At 13:00 you could have tried to factor the equation - it simply comes to (4y-25)(4y+5) = 0. Saves a lot of maths.. Really interesting problem and solution nevertheless, thanks.

  • @yukonheart
    @yukonheart Рік тому

    Does x^2 +1/x^2 = (x+1/x)^2 ? If I take (x + 1/x) ( x+1/x) I get x^2 + 1 + 1 + 1/x^2 = x^2 +2 + 1/x^2 which does not equal x^2 +1/x^2 ? AM I doing something wrong? IF not then how can x^5 + 1/x^5 = (x +1/5)^5

  • @gkwugqbfig2vjg332
    @gkwugqbfig2vjg332 2 роки тому

    Bravo!!
    je vous me chercher
    Comment résolu
    2ex(x)-3ex(y)=5
    j'ai trouvé
    x=3
    y=1
    maisl
    ilya une solution
    x=5
    y=3
    2×2×2×2×2=32
    3×3×3=27
    32-27=5
    (S.V.P.)
    Comment fait pour trouver la deuxième solution
    Merci
    Mes salutations

  • @ak-indonesia4968
    @ak-indonesia4968 3 роки тому

    Amazing

  • @elkincampos3804
    @elkincampos3804 3 роки тому +1

    But the complex solution are more real than real solution. The polynomials (with real coefficients) have all solutions in the complex numbers.

    • @SyberMath
      @SyberMath  3 роки тому

      That's really true! 😁

  • @souleymanesylla2548
    @souleymanesylla2548 3 роки тому

    I like your move on this one

  • @JohnRandomness105
    @JohnRandomness105 2 роки тому

    Cross multiply, cancel the x (which can't be zero), and get this: 16 x^10 - 205 x^6 - 205 x^4 + 16 = 0. Now factor out x² + 1.
    16(x² + 1)(x^8 - x^6 + x⁴ - x² + 1) - 205x⁴(x² + 1) = 0, and divide by (x² + 1) which can't be zero. 0 = 16(x^8 - x^6 + x⁴ - x² + 1) - 205x⁴.
    Now divide by x⁴: 0 = 16(x⁴ - x² + 2 - 1/x² + 1/x⁴ - 1) - 205 = 16(x² + 1/x²)² - 16(x² + 1/x²) - 16 - 205. Solve this quadratic:
    x² + 1/x² = (16 ± sqrt(256 + 4*16*221))/32 = ½ ± sqrt(4 + 221)/4 = ½ ± 15/4. x² + 1/x² is positive, so x² + 1/x² = 17/4. We get another quadratic whose solutions are reciprocals. x⁴ - 17x²/4 + 1 = 0. x² = (17/4 ± sqrt(289/16 - 4))/2 = 17/8 ± sqrt(289 - 4*16)/8 = 17/8 ± sqrt(225)/8 = (17 ± 15)/8 = 4 or 1/4. That means x = ±2 or ±½. Those are the only four real solutions.

  • @mukesh9199
    @mukesh9199 Рік тому

    Hello sir suggest me books for mathematics

  • @gemeni0
    @gemeni0 3 роки тому

    Stop drawing complex roots away.

  • @necro5379
    @necro5379 2 роки тому

    6complex sol. And +-2 and +-1/2 are real sol

  • @shanmughansubramani7837
    @shanmughansubramani7837 2 роки тому

    Why not dividendo x*4_1 will be afactor_x*2_1)(x*2+1)/x*2+1 indenom which will disappear

  • @Megathescientist
    @Megathescientist 3 роки тому

    205/16=(x^10+1)/(x^4*(x^2+1))= u=x^2
    (u^5+1)/(u^2(u+1))=(u^5+u^4-u^4-u^3+u^3+u^2-u^2-u+u+1)/(u^2(u+1))=
    (u^4-u^3+u^2-u+1)/u^2=u^2+1/u^2-(u+1/u)+1=
    (u+1/u)^2-(u+1/u)-1=205/16 T=u+1/u
    t^2-t-221/16=0
    t=17/4 (t deve essere positivo)
    x^2+1/x^2=17/4
    x^4-17/4x^2+1=0
    x=+-sqrt((17+-15)/8)
    so x=+-0.5 or x=+-2

  • @michidayo_1729
    @michidayo_1729 2 роки тому

    ものすごいわかりやすい!
    thanks!

  • @kylekatarn1986
    @kylekatarn1986 3 роки тому

    It is incredible how the method to resolve specific polynomial equations of 4th degree can be used to resolve these kind of equations of higher degree.
    Also, since we have found 4 real solution, the 6 ones left are all complex :P

  • @paulkolodner2445
    @paulkolodner2445 2 роки тому

    I did this the old-fashioned way: I guessed x=2, and I was right. 17 minutes saved.

    • @lei6513
      @lei6513 2 роки тому

      Well you can't just guess what the answer is.

  • @tuantrautre6889
    @tuantrautre6889 3 роки тому

    I think cauchy can be used in this equation

  • @TheodoreBrown314
    @TheodoreBrown314 3 роки тому

    Ngl, I saw the thumbnail, but I missed the part about real solutions. I ended up finding all 8 solutions (since 0, i, and -i all don’t work), and it was a piece of work
    My method was like such:
    Since we can obviously see that x can’t equal 0, the LHS can be divided by x/x. This leaves us with x^10 + 1 on top and x^6 + x^4 on the bottom. I was curious if integer solutions would work, so I tried x=2, and the top became 1025, or 5*205. I checked the bottom, and it matched up, so x=2 (and therefore x=-2 since it’s an even function now). From here, I substituted u=x^2, and I know the new equation has a root of u=4. Multiple denominators across and polynomial long division from here, and the remaining part we need to check for solutions is [u^4 + 64u^3 + 51u^2 - u - 4]
    The new equation has an obvious root of -1 (which can be ignored, since this gives x values of i and -i, and these don’t work), so long division again. We now have [16u^3 + 48u^2 + 3u - 4] left to check for solutions. From here, I noticed that there will be one positive solution where u is less than one, and by fluke I found that u=(1/4) was a solution (I was checking “nice” to approximate what the root would be. I found this after realising 1/2 was way too big). Having this as a root of the expression means that (4x-1) is also a root, and long division happens here. Now there’s just a quadratic left, and so the rest is obvious. The quadratic only has negative u values as roots, so this can also be ignored (I wish I’d realised that before xD. I had to use a calculator to check them)
    Probably not the most reliable method, as I totally got some of the roots by dumb luck, but at least I got to relearn how Synthetic Division works. Never would’ve thought of solving it via your method, and I certainly imagine that your way is more reliable

  • @tmacchant
    @tmacchant 2 роки тому

    16u⁴-80u²-125 can be factorized as
    (4u²-25)(4u²+5)
    at first glance.

  • @AbhishekSingh-qn4bz
    @AbhishekSingh-qn4bz 2 роки тому

    Amazing solution...Thank u very much..!!!

  • @nicogehren6566
    @nicogehren6566 3 роки тому +2

    interesting solution sir thank u

  • @douglashopkins8070
    @douglashopkins8070 3 роки тому

    Y equals 4 u squared is a much nicer substitution at the end. Leaves you with a much simplified calculation at the end.

  • @christopherellis2663
    @christopherellis2663 2 роки тому

    This is how I relax

  • @user-dz6pi4sm8u
    @user-dz6pi4sm8u 3 роки тому

    My goodness, I would never find the trick to solve the equation.

  • @aliasgharheidaritabar9128
    @aliasgharheidaritabar9128 3 роки тому +2

    Excellent solution.very creative.

    • @SyberMath
      @SyberMath  3 роки тому +1

      Thank you very much!

    • @leif1075
      @leif1075 3 роки тому

      @@SyberMath OH COME ON NO ONE WOULD.EVER THINK OF THIS SOLUTION..I FACTORED OUT AN X FROM TOP AND BOTTOM NO ONE WOULD EVER THINK OF FSCTORINF OUT X TK THE FIFTH FROM THE BOTTOM..its random and infuriating..Why the fuck woukd anyone ever think of that? It shouldn't count
      .

    • @resilientcerebrum
      @resilientcerebrum 3 роки тому

      @@leif1075 man you have to mould your thinking like that if you are preparing for olympiads...and that comes with time.. It's not an obvious approach tho.

  • @EdwinBiclar
    @EdwinBiclar 3 роки тому

    The answer is x is equal to 2.

  • @AllanPoeLover
    @AllanPoeLover 2 роки тому

    y 因式分解真的會比較快

  • @tanmaysharma2399
    @tanmaysharma2399 3 роки тому

    You deserve millions of subs and likes!!!!!!!!you make tooo good videos always have fun watching them!!

    • @SyberMath
      @SyberMath  3 роки тому

      Thank you so much 😀💖

  • @mariomestre7490
    @mariomestre7490 2 роки тому

    genial !!

  • @cuongtu6088
    @cuongtu6088 3 роки тому

    good

  • @aashsyed1277
    @aashsyed1277 3 роки тому

    square root of -1 is also a s o l u t i o n

  • @victorchoripapa2232
    @victorchoripapa2232 2 роки тому

    So exquisit👌🏽👌🏽

  • @ispecthor
    @ispecthor 2 роки тому

    Fantastic

    • @SyberMath
      @SyberMath  2 роки тому +1

      Thank you so much 😀

  • @emekaosegbo37
    @emekaosegbo37 Рік тому

    Great learning algebra.

  • @aneeshsrinivas892
    @aneeshsrinivas892 3 роки тому

    Try a substitution x+x^(-2),

  • @Icewallocumm
    @Icewallocumm 2 роки тому

    Beautiful solution

  • @barakathaider6333
    @barakathaider6333 2 роки тому

    👍

  • @rabinarayansahoo166
    @rabinarayansahoo166 2 роки тому

    Thank you sir

  • @johnmlacha7716
    @johnmlacha7716 2 роки тому

    Nice solution

  • @kaslircribs5804
    @kaslircribs5804 3 роки тому

    Another great solution. Thank you!

  • @HuongTran-rm4fd
    @HuongTran-rm4fd 3 роки тому

    Is this type of subtitution common?

  • @leonhardeuler5211
    @leonhardeuler5211 3 роки тому +4

    Is this doable? 😁

    • @SyberMath
      @SyberMath  3 роки тому +3

      Absolutely!

    • @leonhardeuler5211
      @leonhardeuler5211 3 роки тому +2

      @@SyberMath Great problem! Thanks for the video. 😄

    • @SyberMath
      @SyberMath  3 роки тому +1

      You're very welcome, sir!

  • @aashsyed1277
    @aashsyed1277 3 роки тому

    SO COOL!

  • @aashsyed1277
    @aashsyed1277 3 роки тому

    pro you are a pro!

  • @renangomes5880
    @renangomes5880 3 роки тому

    Awesome.