Parametric Equations : Tangents and Normals : ExamSolutions

Поділитися
Вставка
  • Опубліковано 15 гру 2024
  • Tutorial on tangents and normals to parametric equations.
    UA-cam CHANNEL at / examsolutions
    EXAMSOLUTIONS WEBSITE at www.examsoluti... where you will have access to all playlists covering pure maths, statistics and mechanics.
    / examsolutions.net
    NEW INSTAGRAM: / examsolutionsguy
    TWITTER: / examsolutions
    PREDICTIVE GRADES PLATFORM
    LEARN MORE AT: info.examsolut...
    ☑️ Accurate grade predictions
    ☑️ Personalised resources and tuition
    ☑️ Guaranteed results or get your money back
    SIGN UP FOR A 7-DAY FREE TRIAL, THEN 20% OFF.
    share-eu1.hsfo...
    ONLINE COURSES AT:
    www.itutor.exa...
    THE BEST THANK YOU: www.examsoluti...

КОМЕНТАРІ •

  • @spag5296
    @spag5296 7 років тому +30

    For anyone without annotations on, Stuart has included in an annotation that t=-2 was a mistake, at 7:08.

  • @harryyoungiscool
    @harryyoungiscool 9 років тому +13

    i have 2 domestic cats at home

  • @ExamSolutions_Maths
    @ExamSolutions_Maths  12 років тому +1

    Thanks for that. Annotation added.

  • @lazer1235
    @lazer1235 11 років тому +1

    at 5:20 , what if in a question, both of the values satisfied the Y equation? which one would you use?

  • @fahimal-huq6867
    @fahimal-huq6867 5 років тому +2

    Thanks a lot sir..Very clear explanation

  • @rashmiii4951
    @rashmiii4951 3 роки тому +1

    your explanations are very clear sir. thank you so much❤

  • @salmaahmadkhan1829
    @salmaahmadkhan1829 8 років тому +1

    Hi Sir, I love your videos and soluitions as they are extremely helpful.question; why did you take t=-2 and not t=+2?

  • @fahadjhljh3025
    @fahadjhljh3025 8 років тому +1

    wouldn't (3t^2-1)/2t equation be the equation for the curve of x and y and the derivative of this equation will be the gradient for tangent? Please help. Thanks

    • @ExamSolutions_Maths
      @ExamSolutions_Maths  8 років тому

      +fahad jhljh (3t^2-1)/2t is not an equation, there is no = sign. So no.

  • @ExamSolutions_Maths
    @ExamSolutions_Maths  11 років тому

    Both of them I suppose but I am sure there will be some clause in the question to stop this from being the case.

  • @stripedbandit5252
    @stripedbandit5252 5 років тому

    Hi if I can ask a question, why don’t u use y=mx + c when trying to find your tangent or normals? Why y2-y1=m(x2-x1)? Just wondering I never understood this thanks!

    • @ExamSolutions_Maths
      @ExamSolutions_Maths  5 років тому

      Check out this page, especially the second video. It may help answer your question www.examsolutions.net/tutorials/equation-of-a-line-given-the-gradient-and-point/?level=AS&board=Edexcel&module=Pure%20Maths%20AS&topic=1239

  • @MyBuxbunny
    @MyBuxbunny 12 років тому

    thank you for this video

  • @oatie4262
    @oatie4262 3 роки тому

    How did you know that we should be using the x-coordinate 4 and x = t^2 to find t?

    • @ExamSolutions_Maths
      @ExamSolutions_Maths  3 роки тому +1

      You could have used the x or the y part of the parametric equation, but we chose the x =t^2 and the x coordinate = 4 because it is easier to solve for t.

  • @Genji_Glove
    @Genji_Glove 12 років тому

    7:05 , did you mean t=-2 at that point? Corrective annotation? :) Thanks for the vids!

  • @ExamSolutions_Maths
    @ExamSolutions_Maths  11 років тому

    Look at Edexcel Jan 2009 Q7 last part. I have a video on the kind of thing yoou are asking. Hope it helps.

  • @lungilentulie1115
    @lungilentulie1115 9 років тому

    thank you so much sir your explanation help me a lot.

  • @H2KqLimAxzU16
    @H2KqLimAxzU16 10 років тому

    Was there any need to work out the y values?

    • @ExamSolutions_Maths
      @ExamSolutions_Maths  10 років тому +1

      Yes, so that you could see which t value corresponded with the point (4,-6)

  • @ExamSolutions_Maths
    @ExamSolutions_Maths  12 років тому +1

    -16-66 = - 82. Sorry, but I think you will find that I am correct on this one.

  • @michaelgich5047
    @michaelgich5047 9 років тому

    thank you very much sir, the video helped me a lot

  • @omnme1
    @omnme1 11 років тому

    THERE IS AN EASIER WAY TO SOLVE THIS (Just sayin')
    x=t^2 and y=t^3-t
    so y=(t^2)t-t therefore y=xt-t
    sub. x & y
    -6=4t-t which gives t=-2
    eqn. of tangent is [y=-2x-2]
    gradient of normal is -1/(gradient) i.e 0.5
    eqn. of line is y=mx+c
    sub. x,y & new gradient
    you get y=0.5x-8 => eqn. of normal
    Very simple :) correct me if i'm wrong, coz honestly i dnt know if i'm right

  • @ExamSolutions_Maths
    @ExamSolutions_Maths  11 років тому

    Yes but as you said this would be very long winded.

  • @lemorelyoh7369
    @lemorelyoh7369 11 років тому

    Thanks for this video .. ^_^

  • @labibatahsin4873
    @labibatahsin4873 5 років тому +1

    Wasn't the last part, eqn of normal supposed to be 4x+11y+82?????

  • @the_hasnat
    @the_hasnat 4 роки тому

    How many marks would a question like this be?

    • @ExamSolutions_Maths
      @ExamSolutions_Maths  4 роки тому +1

      Hard to say, but I would have said 7 to 10 judging by the stages in the calculation.

    • @the_hasnat
      @the_hasnat 4 роки тому

      @@ExamSolutions_Maths Nice, thanks for the reply, you are amazing!

  • @kishanshrestha5485
    @kishanshrestha5485 8 років тому +3

    U hav a mistake on replacing the value of t .... U just kept the value of t as 2 where as it should b -2

    • @ubaidmohamed9911
      @ubaidmohamed9911 7 років тому +1

      kishan shrestha he just wrote t=2 but has used the value t=-2 in the calculation of dy/dx

  • @kishanshrestha5485
    @kishanshrestha5485 8 років тому +1

    U kept t =2

  • @the_hasnat
    @the_hasnat 4 роки тому

    How many marks would a question like this be?