Olympiad Mathematics | Find missing side lengths in the triangle | (Fast explanation)

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ • 31

  • @mohanramachandran4550
    @mohanramachandran4550 Рік тому +5

    Fantastic sum
    Excellent solution

    • @PreMath
      @PreMath  Рік тому

      Many thanks
      You are awesome. Keep it up 👍

  • @williamwingo4740
    @williamwingo4740 Рік тому +5

    Here's a trigonometric solution: Let AC = b as you did. Then
    tan x = 9/b and tan 2x = b/12.
    But tan 2x = (2 tan x)/(1 - tan^2(x)); so
    b/12 = (18/b)/(1 - 81/b^2) = (18/b)/((b^2 - 81)/b^2); invert the divisor and multiply:
    b/12 = (18/b)((b^2)/(b^2 - 81)) = (18 b^2)/(b)(b^2 - 81); factor out b on the right:
    b/12 = (18 b)/(b^2 - 81); cross-multiply:
    (b)(b^2 - 81) = (12)(18)(b); factor out b again and collect terms on both sides:
    b^2 - 81 = 216; add 81 to both sides:
    b^2 = 216 + 81 = 297 = (9)(33); so b = √((9)(33)) = 3√33, which agrees with your answer.
    From there we proceed as you did, invoking Pythagoras twice to get BC = 21 and AC = 3√42.
    Cheers! 🤠

  • @harikatragadda
    @harikatragadda Рік тому +3

    A circle passes through A and C such that B is the center since AC as a chord subtends angle X in its reflection and 2 X at the center B. Hence the radius of this circle is BC = 9+12 = 21.
    Now its easy to calculate using Similarity of ∆ADC, ∆ACE and ∆CDE
    CD² = AD*DE= 9*33
    CD = 3√33
    AC/AD = AE/AC
    AC² = 9*42
    AC= 3√42

  • @ALIabyazu
    @ALIabyazu Рік тому

    It was great

  • @luigipirandello5919
    @luigipirandello5919 5 місяців тому

    Nice. Thank you.

  • @noamrtd-g4f
    @noamrtd-g4f Рік тому +1

    You can also say the following:
    DC = 12Tan(2x) & DC = 9/Tan(x)
    By using the Double angle formula we can get that
    Tan(2x) = (2tan(x))/(1-tan^2x)
    So we can say that :
    DC = 12*(2tan(x))/(1-tan^2x) &
    DC = 9/Tan(x)
    Thus:
    12*(2tan(x))/(1-tan^2x) = 9/Tan(x)
    From here by solving, we can get that tan(x) = sqrt(3/11)
    => x = 27.57
    From here it's just simple trigonometry to calculate DC, and then we can use Pythagoream theorem for AC & BC
    Amazing videos! Keep it up! ❤

  • @Nature-Melody2106
    @Nature-Melody2106 Рік тому

    💥Nice solution💖💖💖

  • @KAvi_YA666
    @KAvi_YA666 Рік тому

    Thanks for video.Good luck sir!!!!!!!!!!!!!!!!!

  • @tombufford136
    @tombufford136 Рік тому

    I solved this in a similar method, though it took me quite some time.Thank you again.

  • @bekaluu1
    @bekaluu1 Рік тому +1

    Used double angle identity for tan to calculate the height of the given triangle. The rest is easy (Pythagoras theorem)

  • @Copernicusfreud
    @Copernicusfreud Рік тому

    Yay! I solved the problem.

  • @Mycroft616
    @Mycroft616 Рік тому +8

    And then there is me who used the tan(a + b) identity.

    • @petermerrick6615
      @petermerrick6615 Рік тому

      Me too, but only if you have done that level of maths.
      Btw, he could make the Pythagorean calculations easier by scaling down and then back up, which is especially useful in non-calculator scenarios.

    • @orobosaisokpunwu6774
      @orobosaisokpunwu6774 Рік тому

      I used the tan identity as well and solved for CD directly

  • @murdock5537
    @murdock5537 Рік тому

    Nice! DCA = φ; DBC = 2φ; AD = 9; BD = 12; CD = h →
    tan⁡(2φ) = h/12 → tan⁡(φ) = 9/h →
    tan⁡(2φ) = 2tan⁡(φ)/(1 - tan^2(φ)) = h/12 = 18h/(h^2 - 81) → h^2 = 297 = 33(9) → h = 3√33 →
    AC = √(297 + 81) = 3√42 → BC = √(297 + 144) = 21
    or:
    CAB = BCA = 90° - φ → AB = 21 → AD = 9 → BD = 12 →
    CD = h → AC = b = AE + CE ↔AE = CE = AC/2 →
    BC = a = 21 → sin⁡(φ) = (b/2)/21= 9/b → b = 3√42...

  • @wackojacko3962
    @wackojacko3962 Рік тому +1

    Once again the pendulum or dance of Pythagorean Theorem. 😉

  • @marioalb9726
    @marioalb9726 Рік тому +1

    tan x = 9 / h
    h = 9 / tan x
    tan 2x = h / 12
    h = 12 tan 2x
    Equalling:
    9 / tan x = 12 tan 2x
    tan 2x . tan x = 3/4
    Clearing Angle:
    x : 27,575°
    h = 9 / tan x
    h = 17,234 cm
    a = h / cos x
    a = 19,44 cm
    b = 12 / cos 2x
    b = 21 cm
    ( Solved √ )

  • @ybodoN
    @ybodoN Рік тому

    Like two weeks ago, the height (CD) of such a triangle is √(AD² + 2 ⋅ AD ⋅ DB)
    And here are the new formulas: AC = √(2 ⋅ (AD² + AD ⋅ DB)) and BC = AD + DB

  • @quigonkenny
    @quigonkenny 11 місяців тому

    As ∠ADC = 90° and ∠DCA = x, ∠CAD = 90°-x. Similarly, as ∠CDB = 90° and ∠DBC = 2x, ∠BCD = 90°-2x. As ∠DCA = x and ∠BCD = 90°-2x, ∠BCA = 90°-2x + x = 90°-x. As ∠BCA and ∠CAB are congruent, ∆ABC is isosceles and AB = BC = 12+9 = 21 ---- (sol 1)
    Triangle ∆CDB:
    a² + b² = c²
    12² + CD² = 21²
    CD² = 441 - 144 = 297
    CD = √297 = 3√33 ---- (sol 2)
    Triangle ∆ADC:
    c² = a² + b²
    CA² = 9² + (3√33)² = 81 + 297 = 378
    CA = √378 = 3√42 ---- (sol 3)

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    Sine rule.. 21/sin(x+(180-90-2x))=AC/sin2x.. con AC=9/sinx...risukta dai calcoli sinx=sqrt(9/42)..successivamente calcolo tutti i lati

  • @AnonimityAssured
    @AnonimityAssured Рік тому

    This is made more manageable with a little trick.
    Spoiler alert.
    First, divide the given lengths by three, as they have it as a common factor, then multiply by three at the end.

  • @michaelkouzmin281
    @michaelkouzmin281 Рік тому

    Hi! by the way to figure out all unknowns x = atan(9/(3*sqrt*33)) = D48.13

  • @JSSTyger
    @JSSTyger Рік тому

    CB=21 and AC = 3sqrt(42)

  • @muslim19800
    @muslim19800 Рік тому

    🔼 *I like it* 🔼

  • @gelbkehlchen
    @gelbkehlchen Рік тому

    Solution:
    angle ACB = angle ACD + angle DCB = x+90°-2x = 90°-x
    angle BAC = angle DAC = 90°-x ⟹ angle ACB = angle BAC = 90°-x ⟹
    BC = AB = 9+12 = 21 [because ABC is an isosceles triangle]
    Pythagoras in triangle DBC:
    DC = √(BC²-BD²) = √(21²-12²) = √297 = 3*√33 ≈ 17,2337
    Pythagoras in triangle ADC:
    AC = √(AD²+DC²) = √(9²+297) = √378 = 6*√10,5 ≈ 19,4422

  • @mathexpress9171
    @mathexpress9171 Рік тому

    I solve it by trigonometry

  • @bigm383
    @bigm383 Рік тому +1

    ❤🥂😀📐

    • @PreMath
      @PreMath  Рік тому +1

      Thanks for your continued love and support!
      You are awesome. Keep it up 👍
      Stay blessed 😀

  • @marioalb9726
    @marioalb9726 Рік тому +1

    Everytime we have this configuration, with angle x and 2x as figure shows,
    we have an isosceles triangle, of equal sides 's' = 9+12 = 21
    So, side CB = side AB
    s = 21 cm
    cos 2x = 12 / 21
    x = 27,575°
    tan 2x = h / 12
    h = 17,234 cm
    tan x = 9 / c
    c = 17,233 cm
    ( Solved √ )

  • @harrymatabal8448
    @harrymatabal8448 6 місяців тому

    English is not a precise language. If the side is missing how can I find it length. First I must find the side. Don't you agree😂