Math Olympiad Geometry Problem | Find the length X in the regular hexagon

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ •

  • @marioalb9726
    @marioalb9726 28 днів тому +2

    α = BPC ; β = ABP
    Sine rule:
    sinα /2 = sin120° /3
    α =35,2644° ; β =60°+α =95,2644°
    Cosine rule:
    x² = 2² + 3² - 2*2*3*cosβ
    x = 3,755 cm ( Solved √)

  • @ritwikgupta3655
    @ritwikgupta3655 28 днів тому

    Yours is very clean method and calculation.
    I used cosine rule on angles BCP (to find a) and ADP to find x, AD being 2+2 and DP being 2-a.

  • @soli9mana-soli4953
    @soli9mana-soli4953 28 днів тому

    I solved it this way:
    I drew the scalene trapezoid APHK by drawing the perpendicular to AB that passes through the point C (above and below) and extending AB to the right until it meets the said perpendicular and therefore PH // to AB.
    I found PC by applying the cosine rule on PCB triangle (PC=a and angle in C = 120°), with cos 120° = -1/2
    3² = 2² + a² - 2*2*a*(-1/2)
    a² + 2a - 5 = 0
    a = √ 6 - 1
    being PHC a right-angled triangle of the type 30°60°90°, it follows that
    PH = (√ 6 - 1)/2
    HC = (3√ 2 - √ 3)/2
    the height of the trapezium HK = HC + CK
    CK = √ 3 and BK = 1 (since BC = 2 and BCK is of the type 30°60°90)
    HK = (√ 3 + 3√ 2)/2
    Finally we can find X with the Pythagorean theorem:
    X² = [(√ 3+3√ 2)]² + [ (2+1) - (√ 6 - 1)/2]²
    X² = 19 - 2√ 6

  • @quigonkenny
    @quigonkenny 9 днів тому

    As ABCDEF is a regular hexagon, all internal angles are 120° and all sides = AB = 2.
    Let ∠BCP = θ. As PB is given as 3, BC = AB = 2, and θ = 120°, we can use the law of cosines to determine CP.
    Triangle ∆BCP:
    PB² = BC² + CP² - 2BC(CP)cosθ
    3² = 2² + CP² - 2(2)CP(-1/2)
    9 = 4 + CP² + 2CP
    CP² + 2CP - 5 = 0
    CP = [-(2)±√((2)²-4(1)(-5))]/2(1)
    CP = -1 ± √(4+20)/2
    CP = -1 ± √24/2 = -1 ± √6
    CP = -1 + √6 | CP = -1 - √6 ❌ CP > 0
    Draw AC. As FA and CD are parallel, then ∠FAC = ∠ACP = 90°. Let M be the midpoint of AC. As AB = BC, ∆ABC is an isosceles triangle and thus BM is a perpendicular bisector of ∆ABC, forming two congruent right triangles ∆BMA and ∆CMB. As ∠ABC = 120°, ∠ABM = ∠MBC = 60°, and thus ∆BMA and ∆CMB are special 30-60-90 right triangles. As AB = BC = 2, CM = MA = √3, so CA = 2√3.
    Triangle ∆ACP:
    AC² + CP² = PA²
    (2√3)² + (√6-1)² = x²
    12 + (6-2√6+1) = x²
    19 - 2√6 = x²
    x = √(19-2√6)

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO

  • @ritwikgupta3655
    @ritwikgupta3655 28 днів тому

    Yours is ery clean method and calculation.
    I used cosine rule on angles BCP (to find a) and ADP to find x, AD being 2+2 and DP being 2-a.

  • @michaeldoerr5810
    @michaeldoerr5810 29 днів тому +1

    The answer is x = sqrt(19-2*sqrt(6)). This is an example of both using knowledge of the 30-60-90 triangle AND using auxiliary lines. And also combine that with interior angles of the hexagon. I better use that for practice!!!

  • @jimlocke9320
    @jimlocke9320 28 днів тому

    For those who, like myself, aren't very clever with constructions: Extend AB to the right and drop a perpendicular from P. Label the intersection G. Extend DC until it meets the extended AB and label the intersection as point H. Note that ΔBCH is equilateral, so CH = BH = BC = 2. ΔPGH is a 30° - 60° - 90° right triangle, Let BG have length m, then GH has length 2 - m. From ratio of sides, PG has length (2 - m)(√3). Apply the Pythagorean theorem to ΔBPG: ( m² + ((2 - m)(√3))² = 3², which simplifies to 4m² - 12m + 3 = 0, roots m = (3 + √6)/2 and (3 - √6)/2. Since GH = 2 - m must be positive, we discard the first solution and m = (3 - √6)/2.
    Then, apply the Pythagorean theorem to ΔAPG. (AG)² + (PG)² = (AP)², (2 + m)² + ((2 - m)(√3))² = x². Expanding, 4 + 4m + m² + 12 - 12m + 3m² = x². Simplifying, 4m² - 8m + 16 = x² and m² - 2m + 4 = x²/4. We substitute m = (3 - √6)/2: ((3 - √6)/2)² - 2((3 - √6)/2) + 4 = (9 - 6√6 + 6)/4 - 2((3 - √6)/2) + 4 = (15 - 6√6)/4 - (12 + 4√6)/4 + 16/4. Simplifying, (19 - 2√6)/4. Set equal to x²/4: x²/4 = (19 - 2√6)/4, x² = 19 - 2√6, x = √(19 - 2√6), as Math Booster also found.
    Math Booster's clever constructions lead to much simpler algebra, but, with enough effort on my part, I reached the same solution.

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO

  • @marioalb9726
    @marioalb9726 28 днів тому +1

    If PB = 2√3 then x=4 cm
    If PB = 2 then x=2√3 cm
    If PB = 3 then
    a) Average:
    x= 3,732 +0,1/-0
    b) Simple rule of 3, respect to "2"/"3"
    x = 3,821 +0/-0,1
    c) Average of above:
    x = 3,776 ± 0,025

    • @marioalb9726
      @marioalb9726 28 днів тому +1

      α = BPC ; β = ABP
      Sine rule:
      sinα /2 = sin120° /3
      α =35,2644° ; β =60°+α =95,2644°
      Cosine rule:
      x² = 2² + 3² - 2*2*3*cosβ
      x = 3,755 cm ( Solved √)

  • @Grizzly01-vr4pn
    @Grizzly01-vr4pn 26 днів тому

    ∠BCP = 120° so apply the law of cosines to △BCP to determine CP = √6 - 1
    So PD = 2 - (√6 - 1) = 3 - √6
    ∠ADP = 60° and AD = 4 so apply the law of cosines to △ADP to determine AP = √(19 - 2√6)

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO

  • @giuseppemalaguti435
    @giuseppemalaguti435 29 днів тому +1

    PC=a..PBC=β..PBA=γ..legge del coseno 9=a^2+4-4acos120..a=√6-1..a/sinβ=3/sin120..β=arcsin(√3(√6-1)/6)..γ=120-β...x^2=4+9-2*2*3cosγ/=16+√3√(5+2√6)-3√6=14,1010205...mah

  • @DB-lg5sq
    @DB-lg5sq 28 днів тому

    شكرا لكم على المجهودات
    يمكن استعمال
    BD^2 =12
    BP^2=BC^2+CP^2-2BC CP COS120
    BP=-1+racine6
    PD=2-PC
    =3-racine6
    X^2=AD^2+DP^2 - 2AD DP cos60
    =19-2racine6

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO

  • @kateknowles8055
    @kateknowles8055 9 днів тому

    A circle through the six vertices of the hexagon will have a radius of 2 .
    Angles in the in this circle standing on equal arcs will subtend equal angles . ( THIS WAS WRONG Angle ADB = Angle APB was assumed.)
    Angle ADB = 90º so sine of (ADB) =30º
    In triangle APB, sin( A) /3 = sin(B)/X = sin(P) /2 From here: sin(A) = 3/2 × sin(30º) = 3/4 , sin(A)/3 = 1/4 , X = 4 sin(B)
    sin (B) = sin(180º-A-P) = sin (A+P) = sin (A)cos (P) + sin(P)cos(A) = 3/4 × 3^½/2 +1/2 × (7^½)/4 so X = 3.921 approx
    This does not match the podcast so I have more mistakes to find: because my mistake might help people to avoid hasty steps!

    • @kateknowles8055
      @kateknowles8055 9 днів тому

      Point P is on the hexagon, but it is not on the circle. That is why my answer was incorrect.

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO

  • @茶紅-t6s
    @茶紅-t6s 27 днів тому

    Guys..you are very smart. Good

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO

  • @សុមន្តី
    @សុមន្តី 19 днів тому

    Pleas compair the.sum of.diameter.and perimeter

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO

  • @wasimahmad-t6c
    @wasimahmad-t6c 26 днів тому

    What dis math du yuo naw math uot area

  • @ΓΕΩΡΓΙΟΣΑΡΣΕΝΙΑΔΗΣ
    @ΓΕΩΡΓΙΟΣΑΡΣΕΝΙΑΔΗΣ 27 днів тому +1

    Extremely annoying accent

    • @animetv5740
      @animetv5740 7 днів тому

      ua-cam.com/video/2D-55qRKCZI/v-deo.htmlsi=q2RAy6dGNwG9wQxO