Russian Math Olympiad | A Very Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 16

  • @RAG981
    @RAG981 День тому +3

    Brilliant! Putting APD and DQC together was a phenomenal move. I have resubscribed.

  • @marioalb9726
    @marioalb9726 День тому +5

    A = 3+4 = 7 cm² ( Solved √ ) Easy!!!
    Suppose equilateral triangle rotates over point B, with its vertices always over the sides of rectangle. Like an engine cam
    Then, the ratio of rectangle sides, varies, between horizontal rectangle, square and vertical rectangle
    Let's search the border conditions:
    Border condition N° 1)
    Triangle side BP, vertical :
    A₃ becomes 0, A becomes equal to A₄ ,
    and A=A₃+A₄=0+A₄= A₄
    Border condition N°2)
    Triangle side BQ horizontal :
    A₄ becomes 0, A becomes equal to A₃ ,
    and A=A₃+A₄= A₃+0 = A₃
    Border condition N°3)
    Triangle side PQ at 45°
    The rectangle becomes a square.
    A₄ becomes equal to A₃
    A₃+A₄ = ½s²sin30° = 7 cm²
    s² = 14/sin30°= 28cm² --> s=5,2915cm
    A = ½b.h = ½s½s= ¼s²= 7cm²
    A = A₃+A₄ = 3,5+3,5 = 7 cm²
    IN ALL 3 border conditions
    A = A₃ + A₄
    Always A = A₃ + A₄ ,
    for any angular position of equilateral triangle

  • @AMOSKLEIN
    @AMOSKLEIN День тому +2

    Brilliant! Superb! I'm speechless.

  • @petermischler7324
    @petermischler7324 21 годину тому

    The sum of the two triangles is always the triangle in the upper right corner. I proved it by substituting Q by (rcos(phi), rsin(phi)) and P by (rcos(phi+60°),(rsin(phi+60°)), where phi is the angle of CBQ and using the trigonometric identities.

  • @jimlocke9320
    @jimlocke9320 День тому

    It would appear that Θ could take on any value between 0° and 30° and we could solve a special case and apply it to the general case, but that is not the case! Only one value of Θ makes the figure valid. Another approach: At 3:10, x = a tan(Θ) and y = b tan(30° - Θ). From the areas, we generate two equations: For ΔABP: ax/2 = 3, ax = 6, (a)(a tan(Θ) = 6 and a²tan(Θ) = 6. For ΔBCQ, by/2 = 4, by = 8, (b)(b tan(30° - Θ) = 8 and b²tan(30° - Θ) = 8. From the Pythagorean theorem, for ΔABP, a² + (a tan(Θ))² = (PB)², or a²(1 + tan²(Θ))² = (PB)² and, for ΔBCQ, b² + (b tan(30° - Θ))² = (BQ)² or b²(1 + tan²(30° - Θ)) = (BQ)². However, PB = BQ, so a²(1 + tan²(Θ))² = b²(1 + tan²(30° - Θ)). From a²tan(Θ) = 6, a² = 6/tan(Θ) and b² = 8/tan(30° - Θ). These values can be substituted in a²(1 + tan²(Θ))² = b²(1 + tan²(30° - Θ)) for (6/tan(Θ))(1 + tan²(Θ))² = (8/tan(30° - Θ))(1 + tan²(30° - Θ)), which can be solved for Θ. The area of the rectangle is ab. The side of the equilateral ΔBPQ can be calculated and used to compute its area. Area ΔPDQ = area rectangle ABCD - ΔABP - ΔBCQ - ΔBPQ. This is a much more difficult way of solving but it should produce a result!

  • @senirudilmith-n8z
    @senirudilmith-n8z День тому

    thank you sir.. everyday learn from you.. and improve my math skill..

  • @markwu2939
    @markwu2939 День тому

    Set BP = x and ∠ABP = θ. For ΔBAP, the area = x²sin(2θ)/4 = 3. For ΔBCQ, the area = x²sin(60°-2θ)/4 = 4.
    These two equations give that cot(2θ) = 11/3√3.
    For ΔBCQ, the area = x²sin(60°+2θ)/4 = x²sin(60°)cos(2θ)/4 + x²cos(60°)sin(2θ)/4
    = sin(60°)[x²sin(2θ)/4]cot(2θ) + cos(60°)[x²sin(2θ)/4] = (√3/2)(3)(11/3√3) + (1/2)(3) = (11/2)+(3/2) = 7

  • @shaharnevo2086
    @shaharnevo2086 День тому

    Solution without sinus: From the center O of the equilateral triangle draw lines to P and Q and also two verticals to the upper and right sides of the rectangle.These 4 lines and these two sides of the rectangle create two right triangles. One is similar to triangle APB, One to BQC and one to PDQ. The ratio of similarity between those to APB and BQC is sqrt(3). From this we get equation that gives the desired 7.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    (3)^2 (4)^2={9+16}=25 360°ABCD/25=7.5 (ABCD ➖ 7ABCD+5).

  • @blogfilmes1134
    @blogfilmes1134 День тому

    Linda resolução !

  • @zdrastvutye
    @zdrastvutye День тому

    it is nested like a russian babushka. however, i solved it without
    angle functions, but i got a slightly different result:
    10 print "math booster-russian math olympiad-a very nice geometry problem"
    20 a1=3:a2=4:na=a1+a2:sw=sqr(a1+a2)/53:l1=sw:dim x(2,2),y(2,2):goto 130
    30 l2=2*a1/l1:l3=2*a2/l1:dg=(l1^2+l2^3-l4^2)/na:return
    40 l4=sw:gosub 30
    50 l41=l4:dg1=dg:l4=l4+sw:if l4>20*l1 then 90
    60 l42=l4:gosub 30:if dg1*dg>0 then 50
    70 l4=(l41+l42)/2:gosub 30:if dg1*dg>0 then l41=l4 else l42=l4
    80 if abs(dg)>1E-10 then 70
    90 return
    100 gosub 40:if l4>20*l1 then return
    110 l5=sqr(l4^2-l3^2):dfu1=(l1-l3)^2/na:dfu2=(l5-l2)^2/na:dfu3=l4^2/na
    120 df=dfu1+dfu2-dfu3:return
    130 l1=sw
    140 gosub 100:if l4>20*l1 then else 160
    150 l1=l1+sw:goto 140
    160 l11=l1:df1=df:l1=l1+sw:if l1>10*sqr(na) then stop
    170 l12=l1:gosub 100:if df1*df>0 then 160
    180 l1=(l11+l12)/2:gosub 100:if df1*df>0 then l11=l1 else l12=l1
    190 if abs(df)>1E-10 then 180 else 210
    200 xbu=x*mass:ybu=y*mass:return
    210 print l1;:ar=(l1-l3)*(l5-l2)/2:print "die flaeche=";ar
    220 x(0,0)=0:y(0,0)=0:x(0,1)=l5:y(0,1)=0:x(0,2)=l5:y(0,2)=l3
    230 x(1,0)=l5:y(1,0)=l3:x(1,1)=l5:y(1,1)=l1:x(1,2)=l2:y(1,2)=l1
    240 x(2,0)=0:y(2,0)=0:x(2,1)=l2:y(2,1)=l1:x(2,2)=0:y(2,2)=l1
    250 masx=1200/l5:masy=850/l1:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window. you may add "@zoom%=1.4*@zoom%" for fullscreen graphics

  • @Emerson_Brasil
    @Emerson_Brasil Годину тому

    Linda solução!!! 🎉🎉🎉

  • @math-problem6940
    @math-problem6940 2 дні тому +1

    Are there another way than rotation way that easier ?

  • @marcgriselhubert3915
    @marcgriselhubert3915 День тому +1

    Fine.

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 День тому

    In triangle APC ,P=150,A=C=15?

  • @shaharnevo2086
    @shaharnevo2086 День тому

    Test