Solving A Function

Поділитися
Вставка
  • Опубліковано 16 вер 2024

КОМЕНТАРІ • 13

  • @noteasybeingakid7242
    @noteasybeingakid7242 6 днів тому

    Thank you for your math UA-cam. It’s very helpful.

  • @danielpraise2146
    @danielpraise2146 9 днів тому

    You always come up with something that really entertaining to me.
    Keep up ❤ your excellent 👌 job

  • @alexandermorozov2248
    @alexandermorozov2248 8 днів тому

    An interesting property of proportion that I didn't know about before! (:

  • @yakupbuyankara5903
    @yakupbuyankara5903 9 днів тому

    G(x)=2-3x/x+4

  • @pwmiles56
    @pwmiles56 9 днів тому +1

    You can do these by matrices. In this case f(x) and g(x) are represented by matrices F and G such that
    F=|1 -1|, F^(-1) ~ |1 1| (the matrices act on homogeneous
    |1 1| |-1 1| coordinates so can be multiplied by a scalar)
    FG = |2 1|
    |1 -3|
    G = |1 1| |2 1|
    |-1 1| |1 -3|

    G = |3 -2|
    |-1 -4|
    equivalent to
    g(x) = (-3x + 2)/(x + 4)

    • @MrGeorge1896
      @MrGeorge1896 4 дні тому +1

      Nice approach especially for more complex cases with higher powers of x involved.

    • @pwmiles56
      @pwmiles56 4 дні тому

      @@MrGeorge1896 Interesting. Do you have an example in mind?

    • @MrGeorge1896
      @MrGeorge1896 4 дні тому +1

      @@pwmiles56 Maybe I was a little bit too excited about using it. I expected it to be solving a problem like this one:
      f(x) = (x + 1)² / (x - 1)² and f(g(x)) = (2x² - 1)² asking for g(x)...

    • @pwmiles56
      @pwmiles56 4 дні тому +1

      @@MrGeorge1896 I see. There is a theory of higher order rational functions, called Cremona transformations, but it's quite difficult and not done by matrices.
      EDIT: For example the bilinear transformation
      f(z) = (az+b)/(cz+d)
      is also a Cremona transformation of the complex plane:
      f(z)=(az+b)(c*z*+d*)/|cz+d|^2
      In homogeneous coordinates, with z=x+iy, this becomes
      f(x; y; 1) = (real quadratic in x,y; real quadratic in x,y; |cz+d|^2 i.e. another real quadratic in x,y)
      Because f(z) has an inverse, so does the Cremona transformation, which is its defining property.

  • @trojanleo123
    @trojanleo123 6 днів тому

    g(x) = (-3x+2)/(x+4)

  • @RameshKumar-ji5kk
    @RameshKumar-ji5kk 8 днів тому

    Or both side -1 add karne par

  • @user-kp2rd5qv8g
    @user-kp2rd5qv8g 6 днів тому

    f(g(x))=[g(x)-1]/[g(x)+1] = (2x+1)/(x-3) > (x+4)g(x)=2-3x > g(x)=(2-3x)/(4+x).

  • @chaosredefined3834
    @chaosredefined3834 8 днів тому

    f(x) = (x - 1)/(x + 1)
    f(x) = (x + 1 - 2)/(x + 1)
    f(x) = (x + 1)/(x + 1) - 2/(x + 1)
    f(x) = 1 - 2/(x + 1)
    2/(x + 1) = 1 - f(x)
    x + 1 = 2/(1 - f(x))
    x = 2/(1 - f(x)) - 1
    g(x) = 2/(1 - f(g(x))) - 1
    1 - f(g(x)) = 1 - (2x + 1)/(x - 3) = (x - 3)/(x - 3) - (2x + 1)/(x - 3) = (-x - 4)/(x - 3) = (x + 4)/(3 - x)
    2/(1 - f(g(x))) = 2/((x + 4)/(3 - x)) = (6 - 2x)/(x + 4)
    g(x) = 2/(1 - f(g(x))) - 1 = (6 - 2x)/(x + 4) - 1 = (6 - 2x)/(x + 4) - (x + 4)/(x + 4) = (2 - 3x)/(x + 4)
    Hence g(x) = (2 - 3x)/(x + 4)