A Nice Geometry Problem From Germany

Поділитися
Вставка
  • Опубліковано 22 лис 2024

КОМЕНТАРІ • 27

  • @jimlocke9320
    @jimlocke9320 8 місяців тому +4

    Solution without trigonometry:

  • @MarieAnne.
    @MarieAnne. 8 місяців тому +2

    Using coordinate geometry, with O at origin and quarter circle in first quadrant:
    O = (0, 0) A = (0, r) B = (r, 0) C = (x, y)
    AC = 3 → (x−0)² + (y−r)² = 3² → x² + y² − 2ry + r² = 9 . . . . (1)
    BC = 6 → (x−r)² + (y−0)² = 3² → x² − 2rx + r² + y² = 36 . . . (2)
    OC = r → (x−0)² + (y−0)² = r² → x² + y² = r² . . . . . . . . . . . . (3)
    (3)−(1) 2ry − r² = r² − 9 → 2ry = 2r² − 9 → y = (2r² − 9) / (2r)
    (3)−(2) 2rx − r² = r² − 36 → 2rx = 2r² − 36 → x = (2r² − 36) / (2r)
    Plug these values of x and y into (3)
    [(2r² − 36) / (2r)]² + [(2r² − 9) / (2r)]² = r²
    (4r⁴ − 144r² + 1296) / (4r²) + (4r⁴ − 36r² + 81) / (4r²) = r²
    4r⁴ − 144r² + 1296 + 4r⁴ − 36r² + 81 = 4r⁴
    4r⁴ − 180r² + 1377 = 0
    r² = (180 ± √(180² − 4·4·1377)) / (2·4)
    r² = (180 ± 72√2) / (2·4)
    r² = (45 ± 18√2) / 2
    Note: C(x,y) is in first quadrant, therefore x = (2r² − 36) / (2r) > 0 → r² > 18
    r² = (45 + 18√2) / 2 = 9 (5 + 2√2) / 2
    *r = 3 √[(5+2√2)/2] ≈ 5.9353*

  • @WahranRai
    @WahranRai 8 місяців тому +3

    6:34 As you quoted Pythagoras you should quote *Al Kashi* for this theorem

  • @jimdunnca
    @jimdunnca 8 місяців тому +2

    Oops. Sorry about that. In my previous comment, I said that this problem represented a regular hexagon inscribed into a circle, but on closer inspection... it isn't! The shorter line segment of three units if extended would pass right out of the area of the circle. It is at the wrong angle to be another side of a hexagon.
    That means that the radius must be slightly shorter than six and trigonometry actually is the best way to solve for it.
    I was much too hasty on my assumption that the figure described part of a hexagon in a circle. Thanks for the kind comments from those who supported me, but I was wrong.

  • @marcgriselhubert3915
    @marcgriselhubert3915 8 місяців тому +1

    Another possibility:
    In triangle AOC AC^2 = OA^2 + OC^2 -2.OA.OC.cos(angle AOC), so 9 = 2.R^2 - 2.R^2.cos(t) = 2.R^2. (1 -cos(t)), with t = angleAOC
    In triangle BOC, by the same way: 36 = 2.R^2.( 1- cos(90° -t) , so 36 = 2.R^2.(1 -sin(t)).
    Let's divide these two equations. We get: 1/4 = (1 -cos(t))/(1 -sint), and so 4 - 4.cos(t) = 1 -sin(t) or cos(t) = (3 + sin(t))/4
    Knowing cos(t)^2 + sin(t)^2 = 1, we get: (9 + 6.sin(t) +sin(t)^2)/16 + sin(t)^2 = 1, or 17.sin(t)^2 +6.sin(t) -7 = 0
    Deltaprime = (3)^2 -17.(-7) = 128 = (8.sqrt(2))^2, and so sin(t) = (-3 - 8.sqrt(2))/17 which is rejected as negative,
    or sin(t) =(-3 -8.sqrt(2))/17. Then we get: 36 = 2.R^2.(1- (-3 +8.sqrt(2))/17) = 2.R^2.(20 -8.sqrt(2))/17
    Then: R^2 = (36.17)/ 2.(20 -8.sqrt(2)) = (9.17)/(10 -4.sqrt(2)) = (9.17)(10+4.sqrt(2)))/68 = 9.(5 +2.sqrt(2))/2 = (45/2) +9.sqrt(2)

  • @JobBouwman
    @JobBouwman 6 місяців тому

    You can easily construct this on graph paper, by slightly rotating the figure clockwise, such that the side BC with length six is oriented vertically:
    * draw BC = 6 cm with midpoint D
    * draw BA in 135° degrees with 3 cm.
    * construct the midpoint M of the circle with two perpendicular bisectors of BC and BA.
    Now it's easily seen that MD = 3 + 1.5*sqrt(2) ~ 5.1213...
    And the radius MC = sqrt((3 + 1.5*sqrt(2) )^2 + 3^2) ~ 5.935...

  • @ramki1970
    @ramki1970 8 місяців тому +1

    you can do it in much simple way. Angle BOC is 60 degree. and BOC is equiletaral triangle. and Hence R= 6

    • @subtlethingsinlife
      @subtlethingsinlife 8 місяців тому

      Equal chords subtend equal angles at centre , so chord with 3 will subtend half the angle at centre than chord with 6 .

    • @guyjinb
      @guyjinb 7 місяців тому

      This is not correct. Chord length is not linearly proportional to central angle size. So just because the chords are 6 and 3, that doesn't mean that the angles will be 60 and 30 degrees, adding up to 90.
      Consider a circle with radius R. A 60 degree central angle yields a chord of length R. However, a 90 degree central angle yields a chord of length R^(1/2). The angle is 1.5 times bigger, but the chord is only about 1.414 times bigger.

    • @guyjinb
      @guyjinb 7 місяців тому

      @@subtlethingsinlife It's true that equal chords subtend equal angles at center, but chord length is not linearly proportional to central angle size.

  • @jimdunnca
    @jimdunnca 8 місяців тому +1

    I enjoy your videos and I enjoy your math because it is very well presented, and very detailed. I appreciate the detail. Sometimes I like to jump ahead in math problems and skip the math if I don't think it's necessary.
    I did that with this problem. I came up with an answer of 6 for the radius because looking at the construction it looked to be part of a regular hexagon inscribed within a circle and if the sides of the hexagon are six then the radius of the circle is six. So when I saw this problem today I skipped the math and just went to six as my answer.
    However, your mathematics points out that 6 is only approximate. That surprised me because I thought that since the pentagram is subscribed within a circle, 6 would have been a little more precise.
    Anyway, I appreciate the detail that you go into and it certainly adds a lot of insight.
    Thanks for everything you are doing.

    • @philippeganty
      @philippeganty 8 місяців тому

      You're very kind. Of course it is 6 units.

    • @jimdunnca
      @jimdunnca 8 місяців тому +1

      @@philippeganty Yeah... I just didn't want to be a jerk about it.

  • @prbprb2
    @prbprb2 7 місяців тому

    2 r^2 = a^2 + b^2 + ab root(2)

  • @ROCCOANDROXY
    @ROCCOANDROXY 6 місяців тому

    Better off keeping the final result in the form R = 3 * sqrt((5 + 2 * sqrt(2))/2),

  • @mathisnotforthefaintofheart
    @mathisnotforthefaintofheart 8 місяців тому

    Apply two times Laws of Cosine, square to eliminate the angle (Pythagorean Theorem and co-function identity) and you get a nice quartic

  • @zdrastvutye
    @zdrastvutye 7 місяців тому

    i solved this with a repeated calculation considering the proportions of the graphics. it can also be done solving 2 equations with 2 unknown numbers r and angle of r pointing from 0 to point c:
    10 print "mathbooster-a nice geometry problem from germany":dim x(1,2),y(1,2)
    20 l1=3:l2=6:rg=1:sw=rg^2/(rg+l1+l2):xc=sw:xa=0:ya=rg:xb=rg:yb=0:goto 50:rem ein gewaehlter radius
    30 yc=sqr(rg^2-xc^2):l1r=sqr((xa-xc)^2+(ya-yc)^2):l2r=sqr((xc-xb)^2+(yc-yb)^2)
    40 dgu1=l1r/l2r:dgu2=l1/l2:dg=dgu1-dgu2:return
    50 gosub 30
    60 dg1=dg:xc1=xc:xc=xc+sw:xc2=xc:gosub 30:if dg1*dg>0 then 60
    70 xc=(xc1+xc2)/2:gosub 30:if dg1*dg>0 then xc1=xc else xc2=xc
    80 if abs(dg)>1E-10 then 70
    90 r=l2/l2r:xc=xc*l2/l2r:yc=yc*l2/l2r:ya=r:xb=r
    100 x(0,0)=0:y(0,0)=0:x(0,1)=r:y(0,1)=0:x(0,2)=xc:y(0,2)=yc
    110 x(1,0)=0:y(1,0)=0:x(1,1)=xc:y(1,1)=yc:x(1,2)=0:y(1,2)=r
    120 print "der radius= ";r:mass=8E2/r:goto 140
    130 xbu=x*mass:ybu=y*mass:return
    140 for a=0 to 1:gcol8+a:x=x(a,0):y=y(a,0):gosub 130:xba=xbu:yba=ybu:for b=1 to 3
    150 ib=b:if ib=3 then ib=0
    160 x=x(a,ib):y=y(a,ib):gosub 130:xbn=xbu:ybn=ybu:goto 180
    170 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    180 gosub 170:next b:next a:gcol8:xba=0:yba=0:gosub 130:circle xba,yba,r*mass
    mathbooster-a nice geometry problem from germany
    der radius= 5.93531145
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @Irtsak
    @Irtsak 8 місяців тому +1

    Nice Geometry provlem , but you use Trigonometry . You can avoid Trigonometry by using Generalisation of Pythagoras Theorem.
    AB²=AC²+BC²+2AC⋅CD (*)
    (R√2)²=3²+6²+ 2⋅3 ⋅ 3√2
    …………….. R=√(22.5+9⋅√2)
    (*) Cause Δ BCD is orthogonal and Equilateral triangle. So CD²+BD²=BC ²
    => 2CD²=6² => CD=3√2

  • @فراسمعابره-ج5خ
    @فراسمعابره-ج5خ 7 місяців тому

    ببساطه bcg=,7 على قوس الدائره وr=5.6m والباقي أصبح سهلا

  • @StefanWA007
    @StefanWA007 7 місяців тому

    6( AOC=30 grade, COB= 60grade, rezulta COB triunghi echilateral, adica raza =6)

  • @soli9mana-soli4953
    @soli9mana-soli4953 8 місяців тому

    I also found a non trigonometric solution, that isn't better, in this way:
    drop perpendiculars from C to OB and to OA , call them CD and CE
    setting CD = x, CE = y, radius = R
    we can write 3 pythagorean identities:
    1) OC² = CD² + CE²
    R² = x² + y²
    2) BC² = CD² + DB²
    6² = x² + (R - y)²
    3) AC² = CE² + AE²
    3² = y² + (R - x)²

  • @murdock5537
    @murdock5537 8 місяців тому

    r = (3√2/2)√(5 + 2√2); AOC = ϑ → cos⁡(ϑ) = (2/17)(6 + √2)

  • @anandharamang3289
    @anandharamang3289 8 місяців тому

    Another easy method
    Split 2 triangles of base 6 & 3
    Apex angles be c and 90 -c for base 6. & 3
    2R*sin((90-c)/2)/2R*sin(c/2)= 3/6
    2R cancelled
    sin(45-c/2)/sin(c/2)= 1/2
    sin 45 * cos(c/2) - cos 45*sin(c/2)/ sin(c/2) = 1/2
    1/√2 (cos(c/2)- sin(c/2))/sin(c/2) =1/2
    cot(c/2) -1= 1/√2
    cot(c/2) = 1/√2+1 = (1+√2)/√2
    Making right angled triangle with base (1+√2), height √2, hypotenuse= √[(1+√2)^2+(√2)^2] =√(5+2√2)
    sin(c/2) = √2/√(5+2√2)
    2R sin(c/2)= 6
    R= 6/(2 * sin(c/2))
    R= 3/(√2/√(5+2√2))= 3√(5+2√2)/√2
    R=5.935...

  • @thinman2007
    @thinman2007 5 місяців тому

    Cosine rule

  • @ThayThangTV
    @ThayThangTV 8 місяців тому

    Very ok

  • @AbdullahKhan-gw7bf
    @AbdullahKhan-gw7bf 8 місяців тому

    You applied very critical rules and not define them briefly. First apply easy possible method then apply tough in alternate methods.

  • @nunoalexandre6408
    @nunoalexandre6408 8 місяців тому +1

    Love 🎉it