Shared root of cubic polynomials - AIME contest 2021

Поділитися
Вставка
  • Опубліковано 23 січ 2025

КОМЕНТАРІ • 3

  • @AshalakVeerSingh
    @AshalakVeerSingh Місяць тому +1

    Nice problem

  • @MrBmarcika
    @MrBmarcika Місяць тому +1

    since the cubic polynomials have a single real root, the other two roots are complex conjugate, so they share both roots, so we can write the polynomials as (x+20)(x^2+ex+f) and (x+21)(x^2+ex+f), expanding this out and using the fact the quadratic term is zero in the first we get e=-20, and then using the fact that the linear term is zero in the second we get that f=420. Now a simple application of the quadratic formula gives us that m=20/2, n=420-100=320, so the sum is 330

  • @dan-florinchereches4892
    @dan-florinchereches4892 Місяць тому +3

    This seems like it would take some calculations. If we use vietas formulas this thing looks very ugly... I will use n instead of √n in my calculations
    From first poly roots -20,m+ni,m-ni
    Coeff x^2:-20+2m=0
    Coeff X: -20*2m+m^2-n^2=a
    Free coeff: -20(m^2+n^2)=-b
    -20^3-20a+b=0
    -8000+800m-20m^2-20n^2+20(m^2+n^2)=0
    -8000+800m=0 so m=10
    From second polinomial
    -c=-21+2m=-1 => c=1
    -d=-21(m^2+n^2)
    -21^3+21^2c+d=0
    -21^2*20+d=0
    d=20*21^2=21(m^2+n^2)
    20*21=100+n^2
    n^2=420-100=320
    n=√320
    According to original problem sum of Re+im^2=330