A Very Nice Math Olympiad Problem | Solve For The Value Of x | You Need To Know This Trick | Algebra

Поділитися
Вставка
  • Опубліковано 2 лют 2025

КОМЕНТАРІ • 27

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 9 днів тому +4

    Divide both sides by 16^(1/x)
    [(3/2)^1/x]^2 +[3/2)^1/x-1=0
    Take (3/2)^1/x = a
    a ^2 + a -1=0
    >(a +1/2)^2 -5/4=0
    > a+1/2= +/- √5/2
    then go on
    It will save time

  • @AndreCabannes
    @AndreCabannes 5 днів тому +1

    To start with, divide both sides by the right hand side. This gives us x root of 9/4 + x root of 3/2 = 1. For simplicity, let's denote by y the quantity x root of 3/2. Then we have y²+y=1. Thus y = (square root of 5 -1)/2. And x = log base y of 3/2. This is the same as log base e of 3/2 divided by log base e of y. Evaluating this numerically yields x = -0.84259... My five math books for middle and high school show the deep simplicity of mathematics.

    • @chris.hoskinson
      @chris.hoskinson 4 дні тому

      Hi Andre, pleasse could you let me know the titles and authors of your school books.

  • @doyourbest7655
    @doyourbest7655 4 дні тому

    The lesson was familiarity with exponents and log of numbers. So appropriate length and careful explanation. So nice introductory lesson, piece by piece

  • @НеллиПшено
    @НеллиПшено 6 днів тому

    Решаем методом устного счета.
    Сокращаем уравнение на 36^х.^1/2
    (2/3)^x^1/2=y
    y^2-y-1=0
    y=(1+√5)/2
    y=(1-√5)/2
    х^1/2=log 1,6
    x^1/2=log(-0,6)
    Good luck!

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 5 днів тому

    [9^(1/x)]+[6^(1/x)]=4^(1/x)
    [(9/4)^(1/x)]+[(3/2)^(1/x)]=1
    Let u=(3/2)^(1/x)>0
    u²+u-1=0 --> u=½[-1±sqrt(5)]
    =-1±½[1±sqrt(5)]
    Note that
    ½[1+sqrt(5)]=ß, golden ratio
    ½[1-sqrt(5)]=-1/ß
    Note that the 2nd root of u

  • @Марія-75
    @Марія-75 5 днів тому

    Спасибо, вы показали решение сложного 😮

  • @sriyanimangalika805
    @sriyanimangalika805 4 дні тому

    36 1/x+ 241/x = 16 1/x 4 1/x * 9 1/x + 4 1/x * 6 1/x =4 1/x * 4 1/x

    4 1/x (9 1/x + 6 1/x) =4 1/x * 4 1/x 9 1/x + 6 1/x = 4 1/x

    1/x log 9 +1/x log 6 = 1/x log 4 1/x( log 9 + log 6) = 1/x log 4

    Fo above to be true log 9 + log 6= log 4

    That statementwould never be true. Therefore there is no real value for x to fulfil the above equation.

  • @OmarCeesay-r4i
    @OmarCeesay-r4i 5 днів тому +1

    Why did you divide them by 36

    • @vanshmauryamgrollno-5111
      @vanshmauryamgrollno-5111 5 днів тому

      To simplify and if you are wondering why not any other number you can but he didn't do it because you need only one answer

    • @joshuacaesar2025
      @joshuacaesar2025 2 дні тому

      14:35

  • @AlCapone-g3d
    @AlCapone-g3d 3 дні тому

    Любой инженер решит это уравнение за 5 минут с калькулятором, который имеет функцию взять корень любой степени

  • @tonyfluxman7596
    @tonyfluxman7596 5 днів тому +3

    Good account but please take away those appalling reminders when you change the page. That bell is enough to you crazy.

  • @marionmaierphilonatura
    @marionmaierphilonatura 4 дні тому +1

    Why did you use a calculator at the end? If a calculator was allowed, you could have used it earlier. I just do not understand the logic behind this process.

    • @asqar_math
      @asqar_math День тому

      It’s fine. He could leave the answer with logs

    • @marionmaierphilonatura
      @marionmaierphilonatura День тому

      @asqar_math however, for the residual logs a calculator was necessary.

  • @prollysine
    @prollysine 9 днів тому +1

    (3/2)^(2*(1/x))+ (3/2)^(1/x)-1=0 , let u=(3/2)^(1/x) , u^2+u-1=0 , u=(-1+/-V(1+4))/2 , u=(-1+/-V5)/2 , (3/2)^(1/x)=(-1+V5)/2 ,
    1/x=log((-1+V5)/2)/log(3/2) , x=log(3/2)/log((-1+V5)/2) , x=~ -0.842592 , 1/x=~ -1.18681 ,
    test , 36^(1/x)+24^(1/x)=~ 0.37233 , 16^(1/x)=~ 0.37233 , same , OK ,

  • @cyruschang1904
    @cyruschang1904 6 днів тому

    36^(1/x) + 24^(1/x) = 16^(1/x)
    9^(1/x) + 6^(1/x) = 4^(1/x)
    9^(1/x) + 6^(1/x) - 4^(1/x) = 0
    (3/2)^(1/x) = a
    a^2 + a - 1 = 0
    a = (-1 +/- √5)/2
    1/x = ln((-1 +/- √5)/2) ÷ ln(3/2)
    x = 1/[ln((-1 +/- √5)/2) ÷ ln(3/2)]

  • @angelicacintra6993
    @angelicacintra6993 5 днів тому

    Very difficult