Write e^x as a sum of an even and an odd function

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 94

  • @glitched_code
    @glitched_code 6 років тому +40

    September starts and everybody's like: "it's already halloween"
    Meanwhile blackpenredpen straight up skips to christmas

  • @sebastiansimon7557
    @sebastiansimon7557 6 років тому +7

    Immediately knew it was sinh(x) + cosh(x) because that’s exactly what I’m studying right now.

  • @maxkoller6315
    @maxkoller6315 6 років тому +2

    oh man, wow! that's just soooo cool. Firstly I would have never thought of splitting a general function in an even and an odd term, that's just so genious and it feels so natural too but secondly splitting up e^x in that way and deriving cosh and sinh from that... man that's just wow (also because it's so simple)
    One of the few vids where I wish I could like 10 times

  • @jaimeduncan6167
    @jaimeduncan6167 6 років тому +5

    It’s one of the cases were the general problem is easier to solve than the particular one. Excellent video.

  • @sergioh5515
    @sergioh5515 6 років тому +10

    Bonus: write it as the sum of even and odd maclaurin series

  • @borg972
    @borg972 6 років тому +2

    Very cool
    This can now be used to find the fourier cosine series and sine series for a function separately and then combine them

  • @GeometryDashCreeper
    @GeometryDashCreeper 5 років тому +1

    this blew my mind in solving a problem, thank you :3

  • @adityajha-do1cd
    @adityajha-do1cd Рік тому

    thanks man i just had a silly doubt in it... but now it's damn crystal clear

  • @lucasfrykman5889
    @lucasfrykman5889 6 років тому +1

    I love these type of puzzle videos but actually reveal to be a big part of mathematics.

  • @Fetherblaka92
    @Fetherblaka92 6 років тому +15

    How do we know that there's a unique decomposition in even and odd part? Because if that's non the case, we can't refer to cosh as "THE even part of e^x".

    • @badrunna-im
      @badrunna-im 6 років тому +4

      If you shift the even part up or down with a +c, you'd still get an even function, but the odd part would need a -c to compensate which would no longer make it odd since it's not antisymmetric around 0, eliminating any other even-odd pair decompositions of a function.

    • @Fetherblaka92
      @Fetherblaka92 6 років тому +3

      @@badrunna-im it seems to me you only proved that a traslation of the solution is not a solution itself. In our case, cosh+c cant be an even part of exp. But What if there's another function, completely different, which is the even part of exp? You should state and demonstrate that if another even part of the f(x) exists it must be a traslation of the first. Am i wrong?

    • @ryannguyen4327
      @ryannguyen4327 6 років тому

      Suppose there exists another even function g(x) and another odd function h(x) such that f(x) = g(x) + h(x). If the pair is different, for some value of x, E(x) ≠ g(x). We will call this value a.
      E(a) ≠ g(a)
      E(a) = g(a) + c, c ≠ 0
      Substitute this expression for E(a) in f(a).
      f(a) = g(a) + c + O(a)
      But because f(a) = g(a) + h(a), it must be true that c + O(a) = h(a).
      Given that both O(a) and h(a) are odd:
      c + O(-a) = h(-a)
      c - O(a) = -h(a)
      h(a) = O(a) - c
      But if h(a) = O(a) + c and h(a) = O(a) - c, then c = 0. This is a contradiction to our condition E(a) = g(a) + c, c ≠ 0, so there must not exist another pair of functions.

    • @yaeldillies
      @yaeldillies 6 років тому

      You're right, Luca. The right way to do it is to shift in a SINGLE point. Suppose f(x) = E'(x) + O'(x) with E, E' even and O, O' odd.
      Suppose E'(x) = E(x) + c,
      f(x) = E(x) + c + O'(x) = E(x) + O(x) and f(-x) = E(x) + c - O'(x) = E(x) - O(x)
      O'(x) = O(x) - c and O'(x) = O(x) + c
      which leads to c = 0 which donifies the problem.

    • @Cannongabang
      @Cannongabang 6 років тому +1

      cmon man..
      there is not a unique decomposition! but there always is one for every function

  • @Rocky-me5cw
    @Rocky-me5cw 6 років тому +1

    1:40 Aaaaaaaaddddd!
    This guy is sweeter than sweet.

  • @danattack4779
    @danattack4779 6 років тому +3

    Chi to the power. Tutor needed.

  • @joaovictormacedosales2520
    @joaovictormacedosales2520 6 років тому +2

    greenpenredpen, YAAAAAAAAAAAAY!

  • @Sid-ix5qr
    @Sid-ix5qr 6 років тому +9

    BlackPenRedPenGreenPen

  • @luissanjose4243
    @luissanjose4243 3 роки тому

    Very good explanation. Thanks

  • @dakotaroberson9921
    @dakotaroberson9921 6 років тому +1

    These transitions are getting better 😂

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      Casey Roberson thank you. I have done tons of them to (somewhat) master it. : )

  • @rob876
    @rob876 6 років тому

    similar to breaking a rank 2 tensor into skew and symmetric parts
    Eij = 1/2(Eij + Eji) + 1/2(Eij - Eji)

  • @puskarpeter
    @puskarpeter 6 років тому +13

    Saw it on Papa Flammys channel first :) But very nice anyways :)

  • @alegian7934
    @alegian7934 6 років тому

    just watched this video and the complex relation videl before it. Wow awesome math

  • @orangeozone9219
    @orangeozone9219 6 років тому +1

    yay! nice video
    try this integral dx/(tanx+cotx+secx+cscx)

  • @alejrandom6592
    @alejrandom6592 4 роки тому

    so beautiful proof

  • @keithsanders6309
    @keithsanders6309 4 роки тому

    Very helpful, thank you!

  • @JonahSussman
    @JonahSussman 6 років тому

    What if you try to find the even and odd parts of sqrt(x)? Both E(x) and O(x) don’t work with real numbers, so does that mean complex functions can also be even or odd?

  • @zakariasaad490
    @zakariasaad490 6 років тому +2

    Great vide, loved it
    but was just wondering why E(-x)=E(x) and O(-x)=O(x) ?

    • @blackpenredpen
      @blackpenredpen  6 років тому +2

      Zakaria Saad those are how we check if functions are even or odd. If you have f(-x)=f(x), then we say f is even. Like cox(-x)=cos(x). So cos is even.

    • @zakariasaad490
      @zakariasaad490 6 років тому +2

      blackpenredpen Thank you :)

  • @user-cc7sm5wc7x
    @user-cc7sm5wc7x 6 років тому

    The Christmas colors gave the punch line away..

  • @scathiebaby
    @scathiebaby 6 років тому

    Amazing !

  • @rafaellisboa8493
    @rafaellisboa8493 6 років тому

    oh yes thank you for this

  • @theginginator1488
    @theginginator1488 6 років тому

    Haven't watched yet, but what I came up with is splitting the taylor series into two parts. Sum(i=0)(inf)(x^i/i!)=Sum(i=0)(inf)(x^(2i+1)/(2i+1)!)+Sum(i=0)(inf)(x^(2i)/(2i)!

    • @theginginator1488
      @theginginator1488 6 років тому

      Update! I didn't know at the time, but these are the taylor series of sinh(x) and cosh(x), so we got the same thing, but with different methods

  • @m_riatik
    @m_riatik 6 років тому

    that was so coooool

  • @Cannongabang
    @Cannongabang 6 років тому

    f(x) = [f(x) + f(-x)]/2 + [f(x) - f(-x)]/2
    first is even, second is odd

  • @antimatter2376
    @antimatter2376 6 років тому

    how could you only divide the f(-x)'s by two but not multiply by 2?

  • @KalikiDoom
    @KalikiDoom 6 років тому

    Awsome!

  • @goliathcleric
    @goliathcleric 6 років тому

    Are there any other properties of even and odd functions, other than how they treat -x? I feel like there's a world of utility there...

    • @stephenbeck7222
      @stephenbeck7222 6 років тому

      Zac Chaney the -x property is the definition. The graphical equivalent is that the even functions have y axis symmetry and the odd functions have origin symmetry (also called “anti symmetry”). There are some calculus properties that can be derived, like the integral from -a to a of an odd function is 0, and the integral from -a to a of an even function is 2 times the integral from 0 to a. And you have combination rules which are interesting, like Odd function times even function is an odd function but odd function times odd function is an even function. Those two are opposite what happens with odd and even numbers: odd number times even number is an even number, and odd number times odd number is odd.

  • @JoshuaHillerup
    @JoshuaHillerup 6 років тому +1

    Does this always work? What if you're say trying it on log(x) in the reals?

    • @stephenbeck7222
      @stephenbeck7222 6 років тому +1

      Joshua Hillerup if -x is not in the domain for x that are in the domain then it does not work. So you can’t do this with square roots or logs, not in the reals. Also, if the original function is already even, then the odd part will be zero, and vice versa.

    • @Cannongabang
      @Cannongabang 6 років тому

      log|x| is even
      yeah that does not answer the question hahs

    • @둥둥-e8u
      @둥둥-e8u 6 років тому

      The presumption is that if f is defined at some x, f is also defined at the -x. Even function is symmetrical w.r.t the x=0 axis, and the odd (0,0) which clearly means that a function must not only be defined at the positive x domain in order to be split into even and odds.
      So no. It doesn’t work since it violates the presumption of the procedure

  • @williamyip2378
    @williamyip2378 6 років тому

    Infact I would say hyper sine and hyper cosine , credit to my undergraduate buddy.

  • @呂永志-x7o
    @呂永志-x7o 6 років тому

    直接想到的是Taylor展開式的奇偶數次項 … 另外我想知道這表示法是唯一的嗎?怎麼證明

  • @david-yt4oo
    @david-yt4oo 6 років тому +1

    how come you always upload so early?

  • @duckymomo7935
    @duckymomo7935 6 років тому

    you mean taylor polynomial?

  • @johnchristian5027
    @johnchristian5027 6 років тому

    nice!

  • @moskthinks9801
    @moskthinks9801 6 років тому

    What the? It feels weird how nothing was on the board in the start like the other vids.

    • @blackpenredpen
      @blackpenredpen  6 років тому

      M. Shebl ikr, I didn't know what I could put down first lol

  • @sinarzaito1106
    @sinarzaito1106 6 років тому

    Integrate (1/x (e^x)) dx .

  • @6subswith0vids80
    @6subswith0vids80 6 років тому +1

    Cosh and sinshhhh

  • @mr.gentlezombie8709
    @mr.gentlezombie8709 6 років тому

    Before Watching: Taylor series

  • @emperorpingusmathchannel5365
    @emperorpingusmathchannel5365 6 років тому +1

    Taylor polynomial lol

  • @VaradMahashabde
    @VaradMahashabde 6 років тому +1

    Ok, I may respect hyperbolic functions more

  • @MuhammadAnas_Official
    @MuhammadAnas_Official Рік тому

    whats your name

  • @guilhermeneryrocha4056
    @guilhermeneryrocha4056 6 років тому +2

    blackpenredpenbluepengreenpenyellowpenorangepen... #YAY

  • @xd-os7jl
    @xd-os7jl 6 років тому

    sinczeks

  • @oscartroncoso2585
    @oscartroncoso2585 6 років тому +1

    First!

  • @Patapom3
    @Patapom3 6 років тому

    Amazing!