Trig identities for trig integral

Поділитися
Вставка
  • Опубліковано 4 січ 2025

КОМЕНТАРІ • 29

  • @maestrum6845
    @maestrum6845 2 роки тому +3

    Thank you for teaching us more than our college professor could

  • @paturelrebecca6763
    @paturelrebecca6763 8 років тому +12

    "this is ging to be equal to... this is going to be equal tooo" :)

    • @cheshstyles
      @cheshstyles 5 років тому

      I felt he would say it before he said it

  • @david0aloha
    @david0aloha 8 місяців тому

    Regarding @1:00 and @2:40 , I wish it was easier to pull these out of my pocket when I needed them. Time to use cue cards to commit more identities to memory.

  • @Bignic2008
    @Bignic2008 10 років тому +1

    RedPaintedTable See the identity he wrote down at 3:00, in pink? If you distribute the 1/2 over the bracket you get 1/2 + (1/2)cos4x

    • @AuroraNora3
      @AuroraNora3 9 років тому

      +Reflective Ducky That's exactly what he did at 3:20

    • @Trcmrtrac
      @Trcmrtrac 8 років тому

      (1/2 × 1) + (1/2 × cos4x) Wesley

    • @DracoGrim
      @DracoGrim 8 років тому +1

      +Wesley Richardson Are you blind or what? It is so obvious!

  • @raphaelmensah6278
    @raphaelmensah6278 6 років тому +5

    Pls why did u differentiate the 1/2cos4x ?

    • @cheshstyles
      @cheshstyles 5 років тому

      Because it's an integral

    • @Eng586
      @Eng586 10 місяців тому

      I think its just a way for him to understand/do integrals with u sub like this easier, at the end of the day he still did the integral correctly. I think it would have been easier for people to understand if he integrated like this:
      problem:
      integral of 1/2cos(4x) dx
      = 1/2 * integral of cos(4x) dx
      u sub with u=4x
      = 1/2 * 1/4*sin4x
      = 1/8 * sin4x
      but he essentialy did that just in a different way.

  • @mfundo1pumla
    @mfundo1pumla 7 років тому +9

    its confusing me more

  • @mauricecolon4359
    @mauricecolon4359 6 років тому +7

    love your vids but this was very confusing and unclear to me ! maybe it was just a difficult problem

  • @HimanshuKumar-mw7pw
    @HimanshuKumar-mw7pw 7 років тому +1

    Please sir videos post with this Technic is not clearly visible.

  • @zulfiyaavezova5058
    @zulfiyaavezova5058 6 років тому +1

    not double angle, half angle. 2:00

    • @djSquire1
      @djSquire1 6 років тому +1

      You can still use the double angle formula in order to derive cos^2(x) and sin^2(x). So he's correct.

    • @Beho1der
      @Beho1der 4 роки тому +1

      @@djSquire1 yup

  • @AslamSg_pro
    @AslamSg_pro 6 років тому +1

    omg, why r u doing comlicated business all of this???

  • @fn326
    @fn326 8 років тому +2

    Should the 1/8(sin4x) be negative? Integ. of cosx = -sinx?

    • @pwnagejetsonjetson4118
      @pwnagejetsonjetson4118 7 років тому

      i was thinking the same thing

    • @async7616
      @async7616 7 років тому +6

      integral of cosx is sinx

    • @oussamacheta7106
      @oussamacheta7106 6 років тому

      yeah ! right ??!!

    • @napier9979
      @napier9979 6 років тому +4

      Integral of cos is sin. You're confusing the derivative of cos which indeed is -sin

  • @jonathanibarra8236
    @jonathanibarra8236 4 роки тому +1

    ????????

  • @jonathanibarra8236
    @jonathanibarra8236 4 роки тому +1

    dont know what just happened

  • @3walidsalah
    @3walidsalah 10 років тому +1

    Buzz Lightyear?

  • @MRBONES-xo1ku
    @MRBONES-xo1ku 7 років тому +2

    Tf!!you really messed me up