Math Olympiad | A Nice Logarithmic Equation | A Nice Algebra Problem

Поділитися
Вставка
  • Опубліковано 9 січ 2025

КОМЕНТАРІ • 7

  • @SALogics
    @SALogics  5 місяців тому +1

    Thank you everyone for your support. I really appreciate it.❤❤ Wish you all the best in your life and career. Have a great day! ❤❤

  • @emmanueldias5571
    @emmanueldias5571 6 місяців тому +2

    Nice, i liked.

    • @SALogics
      @SALogics  6 місяців тому +1

      Thanks for liking ❤

  • @Nguyễn-j9q
    @Nguyễn-j9q 6 місяців тому +2

    Too ez
    We can rewrite the given equation as:
    x^(log27) + 9^(logx) = 36
    Since 27 = 3^3, log27 = log(3^3) = 3log3
    Similarly, since 9 = 3^2, log9 = log(3^2) = 2log3
    Substitute these into the equation:
    x^(3log3) + 9^(2log3) = 36
    x^3 * x^log3 + 81^log3 = 36
    x^3 * x^log3 + 81^log3 = 36
    Since 81 = 9^2, we can write this as:
    x^3 * x^log3 + (9^2)^log3 = 36
    x^(3+log3) + 9^(2log3) = 36
    x^(log3(3)) + (3^2)^(log3) = 36
    x^(log3) * 3^(log3) + 3^(2log3) = 36
    3^(log3) = 1
    x^(log3) + x^(2log3) = 36
    x + x^2 = 36
    Solving for x:
    x^2 + x - 36 = 0
    (x-4)(x+9) = 0
    x = 4 or x = -9
    Therefore, the possible values of x are 4 or -9.

    • @SALogics
      @SALogics  6 місяців тому +1

      Very nice method! ❤

  • @abhimanyubhattacharyya2403
    @abhimanyubhattacharyya2403 6 місяців тому +2

    Y^3+Y^2= 36 . This is a cubic equation. (Y--3 ) (Y^2+4Y+12)=0. We should try also to find out other two values of X from Quadratic equation.

    • @SALogics
      @SALogics  6 місяців тому +1

      It is junior math olympiad ❤