Approximations. The engineering way.

Поділитися
Вставка
  • Опубліковано 4 кві 2021
  • Get the engineering clock/watch here: stemerch.com/collections/cloc...
    Engineering Shirt: stemerch.com/collections/fund...
    STEMerch Store (everything else): stemerch.com/
    Clock explanation (flammable maths video): • The Single Most Import...
    Support the Channel: / zachstar
    PayPal(one time donation): www.paypal.me/ZachStarYT
    Join this channel to get access to perks:
    / @zachstar
    ►Follow me
    Instagram: / zachstar
    Twitter: / imzachstar
    2D Graphing Software: www.desmos.com/calculator
    Thumbnail Design done by @EpicMathTime
    Animations: Brainup Studios ( brainup.in/ )
    Check out my Spanish channel here: / zach star en español
    ►My Setup:
    Space Pictures: amzn.to/2CC4Kqj
    Magnetic Floating Globe: amzn.to/2VgPdn0
    Camera: amzn.to/2RivYu5
    Mic: amzn.to/35bKiri
    Tripod: amzn.to/2RgMTNL
    Equilibrium Tube: amzn.to/2SowDrh
    ►Check out my Amazon Store: www.amazon.com/shop/zachstar

КОМЕНТАРІ • 522

  • @Hempujonsito
    @Hempujonsito 3 роки тому +1005

    "for calculation purposes, let asume this cow is perfectly round"

    • @thepiratepeter4630
      @thepiratepeter4630 3 роки тому +58

      @@danielyuan9862 Considering the digestive system, isn't a cow more related to a donut?

    • @LinhNguyen-my5my
      @LinhNguyen-my5my 3 роки тому +1

      your mum

    • @lucaokino6776
      @lucaokino6776 2 роки тому +23

      let’s assume this cat is a cube

    • @sleepycritical6950
      @sleepycritical6950 2 роки тому +5

      @@thepiratepeter4630 but aren't there more than one orifice?

    • @thepiratepeter4630
      @thepiratepeter4630 2 роки тому +1

      @@sleepycritical6950 But the other orifices aren't "tubes"

  • @Nylspider
    @Nylspider 3 роки тому +932

    "Approximations"
    Oh cool
    "The Engineering way"
    _oh boi this is gonna be good_

    • @blankblank9621
      @blankblank9621 3 роки тому

      Google Play Store Search : jumpjump

    • @blankblank9621
      @blankblank9621 3 роки тому

      Fun And Surprising Game is here.

    • @blankblank9621
      @blankblank9621 3 роки тому +1

      playtime is short but,

    • @blankblank9621
      @blankblank9621 3 роки тому

      only 1 dollar cost is snack cost. This Is Jump Game Adventure. Great BGM And GRAPHIC Is In the Game. Please Enjoy. jumpjump game is Fun.

    • @blankblank9621
      @blankblank9621 3 роки тому

      Thank you

  • @user-uu5xf5xc2b
    @user-uu5xf5xc2b 3 роки тому +423

    I'm an engineer
    I see approximation
    I click

  • @RC32Smiths01
    @RC32Smiths01 3 роки тому +77

    "Why be right when you can approximate?"

    • @livedandletdie
      @livedandletdie 3 роки тому +10

      Why get a girlfriend when you can get a proxy mate.

  • @kazuhoshiinoue2695
    @kazuhoshiinoue2695 3 роки тому +390

    Mathematicians: We need exact solutions!
    Engineers: Nah, "close enough" is good enough.

    • @billferner6741
      @billferner6741 2 роки тому +11

      Right! We first determined what percentage is acceptable, then we stopped iterating. Btw, they went to the moon with calculating with a slide ruler, only 3 decimals, with estimation, 4.

    • @justyourfriendlyneighborho903
      @justyourfriendlyneighborho903 10 місяців тому +2

      But those numbers are irrational, we will never have an exact solution, the estimation becomes synonymous with the exact value for any actual application and for anything abstract we just keep it as is, sqrt(a)

    • @DaTimmeh
      @DaTimmeh 7 днів тому

      Applied Mathematicians: We need to get exactly close enough!

  • @JTCano42
    @JTCano42 3 роки тому +105

    The Forbidden Math

  • @theoreticalphysics3644
    @theoreticalphysics3644 3 роки тому +624

    Ah, the fundamental theorem of engineering.

    • @Ryanisthere
      @Ryanisthere 3 роки тому +60

      2 = e = π =3
      this is the first thing you learn in engineering college

    • @vendettaanonimous5545
      @vendettaanonimous5545 3 роки тому +2

      @@Ryanisthere haahhahahhahhahha awesome😁😁😁😂😂😂 engineer for ever😎😎😎

    • @vendettaanonimous5545
      @vendettaanonimous5545 3 роки тому +15

      and sin(x) = x 😂😂

    • @black_jack_meghav
      @black_jack_meghav 3 роки тому +8

      @@Ryanisthere i don't quite get these jokes. Aren't engineers got to be precise so that buildings don't fall off and circuits don't burn? Using pi=3 would be a fukin travesty, right?

    • @Ryanisthere
      @Ryanisthere 3 роки тому +3

      @@black_jack_meghav r/woooosh

  • @rentristandelacruz
    @rentristandelacruz 3 роки тому +265

    I'm only at 0:16 and I'm already having numerical computing class flashbacks (took that class ten years ago). Netwon Raphson, Regula Falsi, Runge-Kutta. It's all coming back.

    • @omgmaster9985
      @omgmaster9985 3 роки тому +14

      Gauss-Seidel, Picard aaaaah

    • @jpheitman1
      @jpheitman1 3 роки тому +14

      Just finished it two weeks ago...
      AAAHHHHH

    • @Lynx-vi3bi
      @Lynx-vi3bi 3 роки тому +14

      Bisection method :D

    • @alexandroskarypidis1891
      @alexandroskarypidis1891 3 роки тому +9

      I learned FORTRAN in uni when doing this stuff! I'd forgotten I once knew FORTRAN!

    • @moriarteaa4692
      @moriarteaa4692 3 роки тому

      Just had this Yesterday 😂

  • @adityachk2002
    @adityachk2002 3 роки тому +223

    Math never fails to surprise me, I could not even think such a thing could exist

    • @Simpson17866
      @Simpson17866 Місяць тому

      The original special case for square roots is called "The Babylonian Method" because it was invented by a Greek mathematician living in Egypt.
      I think it was named by an engineer who decided "Greece and Egypt ≈ Babylon"

  • @Cralcker
    @Cralcker 3 роки тому +117

    We’re doing this in my calc class rn and I swear to god you explain it better than my professors

  • @davidbeckham2715
    @davidbeckham2715 3 роки тому +78

    Please keep making these so I can make it through college.

  • @aenesturan
    @aenesturan 3 роки тому +75

    first law of engineering: everything is linear

  • @rbpict5282
    @rbpict5282 3 роки тому +49

    That's a really cool formula

  • @iangolsby8471
    @iangolsby8471 3 роки тому +26

    That square root approximation is elegantly simple. Each guess is just the average of the previous guess, and the number over that previous guess. As you approach the root, it becomes the average of the root and the number over the root (number over root is the root). So beautiful

  • @mastershooter64
    @mastershooter64 3 роки тому +16

    dude I was just expecting to get some stuff like pi = 3 = 3 or g^2 = 10 or something like that, but I actually learned a lot!

  • @PapaFlammy69
    @PapaFlammy69 3 роки тому +575

    Nice Clock and Watch, where can I get one of deeze, Zach? :^D

  • @benthayermath
    @benthayermath 3 роки тому +14

    We ❤ approximations!
    Honestly, sometimes wanting an exact solution is lazy. People don't realize how much math goes into designing numerical methods and proving their convergence and stability.

    • @bobh6728
      @bobh6728 2 роки тому +1

      Most square roots can only be approximations since they are irrational. There is no exact solution unless you write with the square root symbol. If you want to use just digits it is going to an approximation. To anyone who says “just use a calculator”, guess what? The calculator uses an algorithm to find the square root up to the number of digits the calculator can work with.

  • @kyrond
    @kyrond 3 роки тому +18

    I did a Bachelors thesis partly on this, when I finally got how it worked when I saw it, it was almost magical.

  • @foxtrot8325
    @foxtrot8325 3 роки тому +15

    Zach : It's possible to get stuck in an infinite loop.
    Float error : IT'S MY TIME TO SHINE

  • @billferner6741
    @billferner6741 2 роки тому +6

    Interesting topic! This reminds me on programming in BASIC interpreter 40 years ago. At that time the value of PI was not implemented, the solution was : 4*arctan(1), which gave PI with the accuracy of devise's BASIC.

  • @jacktorborg9862
    @jacktorborg9862 3 роки тому +14

    I had to use the newton raphson method in my engineering career a few years ago to approximate a function (solving a Civil Engineering equation backwards with multiple square roots in weird places) that otherwise converges on a few nonreal/negative answers and one real, positive one I was looking for. I never thought I would actually apply it in my life when I learned it, but it felt so cool to have a real world application for it! Made me realize that weird, theoretical math part of my degree wasn't quite such a waste of time after all!

  • @FranzBiscuit
    @FranzBiscuit 3 роки тому +2

    The effort put into these videos is just amazing. And the educational content, truly first class. Keep up the good work Zach!

  • @sameerkamath1239
    @sameerkamath1239 3 роки тому +3

    Really cool to see these real world applications- the way you teach math makes it fun and interesting!

  • @ssquarkgaming1405
    @ssquarkgaming1405 Рік тому +3

    What a great video 👌
    It would have been such a great starting point for me a while back when I was writing GPU algorithms for fast square and cube roots of float 32 and float 64 values.
    Managed to get them super fast combining Taylor series expansions, the power laws and the good old Newton raphson iteration. If I remember correctly, about 3ns to compute cube root to fp64 precision.

  • @EmperorSaistone
    @EmperorSaistone 3 роки тому

    Absolutely beautiful. I learned that stuff year ago at the university, but you described it so so much better.

  • @C0MPLEXITY
    @C0MPLEXITY 3 роки тому

    Thanks a lot for the amazing info dude, it's satisfying to get stuff explained by you

  • @moncefkarimaitbelkacem1918
    @moncefkarimaitbelkacem1918 3 роки тому +12

    quality content
    as always

  • @machinedgod
    @machinedgod 3 роки тому +4

    Quickly becoming my favorite youtube channel!

  • @braxtonclaflin1818
    @braxtonclaflin1818 3 роки тому +14

    We’re literally on this exact topic in calculus right now

  • @AmitKumar-xw5gp
    @AmitKumar-xw5gp 3 роки тому +2

    Very awesome video Zack.. Keep up the good work..

  • @caelank5544
    @caelank5544 3 роки тому

    This is so incredibly helpful. I literally had a numerical analysis assignment last week where we had to use Newton Raphson

  • @MrMoore0312
    @MrMoore0312 3 роки тому

    Thanks for the timely video and inspiration! Just finished related rates in Stewart's calculus and the literal next section is linear approximations. Loved this video and can't wait to be thoroughly confused by that coming numerical analysis video lol

  • @vincentdavis8960
    @vincentdavis8960 3 роки тому +1

    Great video! I was wondering if you would mention the Quake fast inverse square root and then bam! Awesome. Keep up the great work!

  • @gastonhebert9967
    @gastonhebert9967 3 роки тому

    Doing it at engineering school, and very happy to find it on UA-cam ! Thanks

  • @iGR8soccer
    @iGR8soccer 3 роки тому +1

    could have used this video last semester during numerical methods. you explained it better in 14 minutes than my prof did in 3 lectures

  • @daviddabeegukabassima8232
    @daviddabeegukabassima8232 9 місяців тому

    As an Engineer I relate to these useful approximations. Thank you so much for theses examples and explanations!

  • @ArmaanDK
    @ArmaanDK Рік тому

    Thank you for bringing context to an otherwise "insignificant" topic covered for 15 mins in a first year calculus course! I thought I hated math, but I've just been missing out on how much fun it can be once you wrap your head around the concepts

  • @tomcarroll6744
    @tomcarroll6744 9 місяців тому

    Good stuff. Nice job.

  • @Pedritox0953
    @Pedritox0953 3 роки тому +1

    Awesome video!

  • @TheDecooledaan
    @TheDecooledaan 3 роки тому +1

    Great timing. I'm starting my numerical analysis class at uni tomorrow

  • @LaserFur
    @LaserFur 3 роки тому +2

    long ago I wrote a integer Square root on a DSP processor. It used the DSP's single cycle multiplier to create the square. then it compared it and set one output bit. after 16 loops I had a 16 bit result.

  • @davidhicks8290
    @davidhicks8290 3 роки тому +2

    Numerical analysis is the coolest class of functions that have already been written for you

  • @rajbunsha8834
    @rajbunsha8834 3 роки тому

    I heard about it before but was thinking why isn't it too famous thanks for elaborating it. I always wanted to know more about it keep it up😀😀😀👍👍🙏🙏

  • @patrickforsyth9880
    @patrickforsyth9880 3 роки тому

    great vid as always

  • @Lunamana
    @Lunamana 3 роки тому +2

    I have a Numerical Analysis midterm in 8 hours so i clicked on this as soon as i saw it in my sub box, thanks ^^

  • @feuerrm
    @feuerrm 3 роки тому +1

    Looking forward to a video about Numerical Analysis, I'm taking it in the fall!

  • @kairostimeYT
    @kairostimeYT 3 роки тому +16

    Applied Numerical Methods. I don't remember the exact name but I remember a technique which converts a definite integral to two (or natural number) terms. Gauss quadrature rule, was it? I honestly was intrigued by this method.

  • @FromLake
    @FromLake Рік тому

    Thank you very much for this video.

  • @tommyhuffman7499
    @tommyhuffman7499 3 роки тому

    Very cool video!!

  • @bittubabu4178
    @bittubabu4178 2 роки тому

    ooh boi i am going through these in my current semester and already coded the fn for iterattive method and newton raphson, loved to know more on it😊

  • @udaysrivastava1957
    @udaysrivastava1957 3 роки тому

    Please make videos like this.
    It was a wonderful video.

  • @TylinaVespart
    @TylinaVespart 3 роки тому

    Damn it's been ages since I did maths "properly", but this was really accessible and a good reminder of how it all slots together. Thank you!

  • @shrideepgaddad8721
    @shrideepgaddad8721 3 роки тому +4

    Holy crap thanks for explaining this, the random pdfs that I found on the internet are confusing as hell.

  • @mahdialhassan6802
    @mahdialhassan6802 2 роки тому

    Dude, I really have to watch all your videos about engineering’s stuff. im in my second year and there is a lot of things i have to be familiar with

  • @sunnohh
    @sunnohh 3 роки тому

    That was one of the coolest videos about a table on my calculus book that I took as magic

  • @justinmccoy4270
    @justinmccoy4270 3 роки тому +2

    The quake 3 fast inverse square root video got me into watching these kinds of videos. Now that's a meme you'll want to see.

  • @clastastic
    @clastastic 3 роки тому

    I read this under the heading computational methods
    TODAY!!

  • @MusiXificati0n
    @MusiXificati0n 3 роки тому

    This video would have been glorious half a year ago... Had a University course in evolutionary game theory and literally all of it was linear approximation because biological/evolutionary models are only estimations and I did not understand what a fixed point was. Seems so easy now...
    Thanks a lot!

  • @matthewao
    @matthewao 3 роки тому +3

    approximations the engineering way: 𝝅=e=3, g=10m/s²=9=𝝅²=e²

  • @CellarDoor-rt8tt
    @CellarDoor-rt8tt 3 роки тому

    Just to contribute an interesting point here. Arguably the most significant piece of evidence we have when it comes the global regularity problem for the Navier Stokes equations is Terence Tao’s work on the subject. His biggest paper on the subject showed that for an approximated form of the Navier Stokes equations (one that has been averaged in an extremely specific and accurate way) blow up results occur.
    The relevance of this is two fold
    1. This may very well be one of if not the most complicated approximations ever thereby showing how approximations are an important part of math and science at every level
    And 2. It shows that even pure mathematicians can use approximations to create partial progress on the toughest problems ever. That result was huge as it showed both that there is a possible pathway toward a full solution and it also showed that any attempt at proving global regularity in the positive would require methods which delve into the finer nonlinear structures with the full pde that got averaged out in the approximation. In many ways, this paper is why most of the community believes that global regularity for Navier Stokes is going to be solved in the negative whenever it happens.

  • @DeGuerre
    @DeGuerre 3 роки тому

    The way your computer calculates square roots (assuming it's a recent computer) is using a related method, Goldschmidt's algorithm. Let Y be an approximation to sqrt(n). Set:
    x_0 = Y*n
    h_0 = Y*0.5
    And iterate:
    r_i = 0.5 - x_i * h_i
    x_{i+1} = x_i + x_i * r_i
    h_{i+1} = h_i + h_i * r_i
    Then x_i converges to sqrt(n) and y_i converges to 1/2sqrt(n). As hinted at in the video, some approximations have advantages over others. In this case, the advantage is that the "inner loop" is three copies of the same operation a + b * c, called a "fused multiply-add". This saves on circuitry compared to Newton-Raphson methods.

  • @Listener970
    @Listener970 3 роки тому

    Beautiful!

  • @Sam-he3ks
    @Sam-he3ks 3 роки тому

    You should definitely talk about the finite element method. Approximating differential equations is a huge deal in engineering (especially civil/mechanical/aerospace)

  • @dakkadakka4036
    @dakkadakka4036 3 роки тому

    Im currently taking a numerical analysis course right now, this 10 minute video made more sense than the whole class has this semester -.-

  • @jessstuart7495
    @jessstuart7495 3 роки тому +1

    Chebyshev Approximations are also very useful.

  • @juliusteo
    @juliusteo 3 роки тому +1

    I took numerical analysis in uni (I think it was called numerical methods) and they recommended to have two scientific calculators to iterate calculations more efficiently (if we're not going to bring our laptops to use excel in class)

  • @AdityaKumar-ij5ok
    @AdityaKumar-ij5ok 3 роки тому +1

    Everyone in comments section: it was about time that you decided to finally make a video this

  • @aceroadholder2185
    @aceroadholder2185 3 роки тому +1

    Some approximations are quite good. If you use 22/7 for the value of Pi then on a 100 ft. diameter circle the circumference error is ~one and a half inches.

  • @pabloariza2295
    @pabloariza2295 3 роки тому

    pretty cool stuff

  • @dylgir1332
    @dylgir1332 3 роки тому

    Yas! You posted something on your OG profile! LIT 🔥

  • @vjekokolic9057
    @vjekokolic9057 3 роки тому

    11:53 both solutions of the equation are the golden ratio, but one is the longer side/shorter side and the other one is the reciprical, shorter side/longer side

  • @Cyrathil
    @Cyrathil 3 роки тому

    Where was this video at the start of the semester. Could have saved me so much time trying to get the early chapters in the numerical analysis class I am taking...

  • @slartbarg
    @slartbarg 3 роки тому +5

    Numerical Methods was one of the more rigorous and work-intensive courses in my mechanical engineering workload so far

  • @JonathanMandrake
    @JonathanMandrake Рік тому

    Another example of numerical approximations of things that are hard to arithmetically calculate is a matrix inverse. Similar to the iteration pf the square root, there is a simple iteration process that leads to a good approximation of the matrix inverse, which takes way longer to compute than the square root, both on a camculator and by hand

  • @bryanfuentes1452
    @bryanfuentes1452 3 роки тому

    i remember this when i took numerical method class. we used loop method to program this

  • @danieljulian4676
    @danieljulian4676 3 роки тому

    Right after watching this video, I listened to Bob Dylan singing "Queen Jane Approximately" from "Blonde On Blonde". Dylan really sucks at rigorous explanation, and Newton-Raphson is also well-presented elsewhere ad nauseam. I understand that going beyond the basics is more difficult, which makes producing lots of videos less likely, and maybe no one will ever even look for the next steps. That is the dilemma of the youtube STEM educator, and is in large part why MIT's OCW series and similar stuff exists and is valuable. That said, it's great that you are reaching out to learners who are just starting out. Well done, man. L'chaim.

  • @SonTekz
    @SonTekz 3 роки тому +24

    pi is 3, e is 3, 4 is 3 lets fucking go

    • @zachstar
      @zachstar  3 роки тому +7

      Those lab teachers though

  • @danielsantrikaphundo4517
    @danielsantrikaphundo4517 Рік тому

    10:43 that iteration method is just computing the finite simple continued fractions of the golden ratio, and will converge to its simple continued fraction.
    A great opportunity to bring up that topic :D

  • @yugdesai4140
    @yugdesai4140 3 роки тому

    Video would have helped so much in understanding my numerical methods class if it was a year ago

  • @rubenlarochelle1881
    @rubenlarochelle1881 3 роки тому +1

    0:00 I've been studying and practicing English for the last 22 of my 25 years of age, but only now I found out that, unlike my mother tongue, English has two separate words for clocks and watches, despite I've known and used both words for years now.

  • @WLand10
    @WLand10 2 роки тому

    What program do you use to make these videos? The math looks so clean, organized, and beautiful.

  • @onstantinosameranis4674
    @onstantinosameranis4674 3 роки тому

    there are some really cool algorithms. First order methods that use only the derivative and second order methods that need fewer iterations but are damn expensive. @Zach Star Please make a video on gradient descent. Hopefully some of the my students will see the simple version and we can move directly into the more involved variants. There is plain gradient descent, smooth gradient descent, accelerated gradient descent, mirror descent, coordinate descent, BFGS and L-BFGS.

  • @ARKGAMING
    @ARKGAMING 3 роки тому

    The clock looks awesome

  • @cesaramaro6933
    @cesaramaro6933 3 роки тому +2

    I went through the first 4 minutes of this just thinking huh, this reminds me a lot of Newton-Rhapson that I learned last summer in Numerical Comp.

  • @HypercopeEmia
    @HypercopeEmia 2 роки тому

    i also have an amazing aproximation technique it's done like this "hmm root of 17 has to be more then 4 since 4^2 =16 but less then 5 since 5^2=25, it's closer to 4 so for all intents and purposes it's 4"

  • @soyokou.2810
    @soyokou.2810 2 роки тому +1

    Diophantine approximation is a surprisingly interesting area of number theory too.

  • @grimreaper173
    @grimreaper173 3 роки тому

    A control theory and applications would be cool to control systems as well as machine learning applications also love the video applications to engineering with algorithms used in matlab and simulink modeling and simulation is such a great field!

  • @liamodonovan5374
    @liamodonovan5374 3 роки тому

    would love to see a video about interpolation/extrapolation :)

  • @roberthuntley1090
    @roberthuntley1090 Рік тому

    One that I can remember (I picked it up from one of Clive Sinclair's companies) is that Pi to 6 decimal places is 355/113. Dates back to the early calculators of the 70s, before scientific calculators were available at affordable prices.
    BTW - 3550001/1130001 does this to 8 decimal places.

  • @b1ngnx33
    @b1ngnx33 3 роки тому

    THANK YOU.

  • @jannegrey593
    @jannegrey593 3 роки тому

    I only learned something similar I think. It was based on Taylor series and you got out of it the approximate value after iteration and how big the error was.
    I don't remember it very well - it was years ago - but I think if you wanted to know for example sqrt(10) - you just used sqrt(9) and sqrt(16) - so basically bracketed a number, or used (I don't remember if you needed bigger and smaller, or just 1 number that was close and knows) an easy number with the same function (in this case sqrt(x)) to start approximation. Sorry - I learned it, while learning Calculus. It looks a bit like the second method in 12:25 - but I'm not 100% certain.

  • @joseant.santiago7216
    @joseant.santiago7216 2 роки тому

    ¡Gracias!

  • @naswinger
    @naswinger 3 роки тому

    can't wait for the numerical analysis examples that took way longer than expected :-)

  • @thespuditron9387
    @thespuditron9387 3 роки тому +1

    Ok, so I just tried the square root formula on excel and it is so damn satisfying.

  • @jhonnythejeccer6022
    @jhonnythejeccer6022 3 роки тому

    I knew this method but didnt think about using it like this

  • @user-my1bq5uw6l
    @user-my1bq5uw6l Рік тому

    amazing

  • @user-zu1ix3yq2w
    @user-zu1ix3yq2w 3 роки тому

    This video came out approximately on my birthday

  • @Lothane95
    @Lothane95 3 роки тому

    I literally learned newtons method today in my Calc class. That's wild lol.

  • @nix_
    @nix_ 3 роки тому +35

    I remember doing this in maths. Just not sure if it was GCSE or A-level.
    Edit: It was A-level

  • @mehdiyahiacherif2326
    @mehdiyahiacherif2326 3 роки тому

    One of the best channels iv seen , i studied business intelligence and math decisions and we had a lot of approximation not arrethmetic ones called #Heuristics it would be good to do a video on someof the most known
    Also qquestion to people who read this , do we really know how to calculate sqare root ?