Can you find the area of the Purple triangle? | (Important Geometry skills explained) |

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 63

  • @robertbourke7935
    @robertbourke7935 10 місяців тому +6

    Got it! Many thanks. A clever exercise.

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks❤️

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы 10 місяців тому +22

    You can use the chord theorem. Extend the DO to the intersection with the circle and get the diameter. And the diameter is a chord. AD*DC=1*3. CD=3/√5. According to the Pythagorean theorem, we find CB=4/√5. S=0.5*(3/√5)*(4/√5)=1.2.

  • @linzhaoxu
    @linzhaoxu 3 місяці тому

    CD=a,BC=b,so a=root(5-bsqr); (a+root5)sqr+b sqr=4sqr; {(root(5-b sqr)+root5}sqr+b sqr=16; so b=4/root5; so a=3/root5, so the sqr about purple zone is 6/5

  • @jakkima1067
    @jakkima1067 27 днів тому

    AD*DC=(R+1)*1=Sqrt(5)*DC=3. DC=3/Sqrt(5). CB^2=DB^2-DC^2=5-9/5=16/5. CB =4/Sqrt(5). Area=DC*CB=3/Sqrt(5)*4/Sqrt(5)/2=12/10=1,2.

  • @spafon7799
    @spafon7799 10 місяців тому +1

    Alternatively: find CD and CB in order to get the area of the triangle as 1/2 * CB*CD. As in the video solution, DO= r/2. Pythagorean on OBD gives (r/2)^2+r^2=5, thus OB=2 and OD=1. Also as in the given solution, extend CD to A, the left point of the circle. Now note that ABC and ADO are similar triangles, since angle AOD and ACB are right angles and OAD and CAB are the same acute angle. Let us call x= DC and y=CB. We have by similar triangles OA/DA=CA/BA. 2/sqrt(5)=(sqrt(5)+x)/4. This gives x=2/sqrt(5). Now you apply pythagorean to triangle BCD to get x^2+y^2=5. Thus 9/5+y^2=5=25/5. Or y^2=16/5 Thus y=4/sqrt(5). Area of the triangle is (1/2)*x*y= (1/2)*(3/sqrt(5))*(4/sqrt(5))= 6/5.

  • @phungpham1725
    @phungpham1725 10 місяців тому +1

    1/The radius of the circle= 2 ( it is easy)
    2/Extend CD to the left to build the right triangle ABC and the diameter AB.
    Notice that the angle CDB = 2 the angle DAO.
    We have tan DAO= 1/2 so tan CDB= 1/ (1-1/4) = 4/3----> BC/DC= 4/3 ------> the triangle BCD is an 3-4-5 triple-----> BC=4/5 BD and DC=3/5 BD
    The area of the purple triangle = 1/2x 4/5xsqrt5 x 3/5x sqrt5= 1.2 sq units
    3/ We can also use the Pythagorean theorem: Let CD and BC be a and b respectively. We have sq(sqrt5+a) + sqb = 16----> 5+sqa+ 2a sqrt5+sqb=16
    ---> 5+5+2a sqrt5=16-----> a= 3/sqrt5 and b= 4/sqrt5-----> area= 1/2 x 3/sqrt5 x 4/sqrt5 = 1.2 sq units

    • @PreMath
      @PreMath  10 місяців тому

      Thanks❤️

  • @jimlocke9320
    @jimlocke9320 10 місяців тому +1

    We note that ΔABC and ΔADO are similar. The ratio of sides for ΔADO is (short-long-hypotenuse) is 1:2:√5 or 1/√5:2/√5:1. Applying that ratio to ΔABC and knowing that its hypotenuse is length 4, the two sides are (4)(1/√5) and (4)(2/√5). The area of ΔABC = (1/2)bh = (1/2)(4)(1/√5)(4)(2/√5) = 16/5. The areas of ΔADO and ΔBDO are (1/2)bh = (1/2)(1)(2) = 1 each. Area ΔBCD = Area ΔABC - Area ΔADO - Area ΔBDO = 16/5 - 1 - 1 = 6/5, as PreMath also found.

  • @zdrastvutye
    @zdrastvutye 6 місяців тому

    either calculate the intersection with a thales circle or calculate
    the coordinate product repeatedly:
    10 print "premath-can you find the area of the purple triangle"
    20 l1=sqr(5):r=2*l1/sqr(5):dim x(1,2),y(1,2):sw=r/(l1+r):w=sw
    30 @zoom%=@zoom%*1.4:xd=0:yd=r/2:xb=r:yb=0:n=r*r+l1^2:goto 60
    40 xc=r*cos(rad(w)):yc=r*sin(rad(w)):dgu1=(xd-xc)*(xb-xc)/n:dgu2=(yd-yc)*(yb-yc)/n
    50 dg=dgu1+dgu2:return
    60 gosub 40
    70 dg1=dg:w1=w:w=w+sw:w2=w:gosub 40:if dg1*dg>0 then 70
    80 w=(w1+w2)/2:gosub 40:if dg1*dg>0 then w1=w else w2=w
    90 if abs(dg)>1E-10 then 80
    100 print w:la=sqr((xd-xc)^2+(yd-yc)^2):lb=sqr((xc-xb)^2+(yc-yb)^2)
    110 x(0,0)=0:y(0,0)=0:x(0,1)=r:y(0,1)=0:x(0,2)=0:y(0,2)=r/2
    120 x(1,0)=0:y(1,0)=r/2:x(1,1)=r:y(1,1)=0:x(1,2)=xc:y(1,2)=yc
    130 ages=la*lb/2:print "die flaeche=";ages:mass=8E2/r:goto 150
    140 xbu=x*mass:ybu=y*mass:return
    150 for a=0 to 1:gcol8+a:x=x(a,0):y=y(a,0):gosub 140:xba=xbu:yba=ybu:for b=1 to 3
    160 ib=b:if ib=3 then ib=0
    170 x=x(a,ib):y=y(a,ib):gosub 140:xbn=xbu:ybn=ybu:goto 190
    180 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    190 gosub 180:next b:next a:gcol8:xba=0:yba=0:gosub 140:circle xba,yba,r*mass
    premath-can you find the area of the purple triangle
    53.1301024
    die flaeche=1.2
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @DB-lg5sq
    @DB-lg5sq 10 місяців тому +1

    شكرا لكم
    DC=a
    AD=جذر5
    BC=(5-a^2)جذر
    AB=4
    .....
    a=3/(5جذر)
    S=1/2 CB CA =6/5

  • @johnsavard7583
    @johnsavard7583 10 місяців тому +1

    The first useful thing I note is that the vertical radius of the quadrant is divided into two equal parts by point D. So the white triangle below the purple triangle has sides r/2, r, and sqrt(5). That tells me r=2, and the area of that triangle is 1. Now if we extend the quadrant on the left to become a semicircle, line CD, when extended, will (because of the right angle) intercept the point opposite B on the diameter at the bottom; let's call that point X. Angle DBO and angle DXO are equal, and so the triangle BXC is similar to triangle DBO. Triangle DXO and triangle DBO have area 1 each. Triangle BXC has a hypoteneuse of 4 instead of sqrt(5), so its area is 1 times 16/5 because it is scaled up by a factor of 4 over sqrt(5). So the purple triangle has area 6/5, 16/5 minus 2 (which is 10/5).

  • @tombufford136
    @tombufford136 8 місяців тому

    At a quick glance, started solving this in a similar way to the video forming a second Chord using Thales theorem. Then found working arduous without a drawing of the the semi circle. Thank you for the video.

  • @ProfessorDBehrman
    @ProfessorDBehrman 10 місяців тому

    Nice problem. Thanks.

  • @awandrew11
    @awandrew11 10 місяців тому +3

    BC=2, DC=1, therefore DB=Square root 5, Area opf triangleBCD=CBxCD/2=2x1/2=1!?

  • @misterenter-iz7rz
    @misterenter-iz7rz 10 місяців тому +1

    I see, I have think out of box, that is extending the quarter circle to semicircle, so there is a right angled triangle inscribed in a semicircle, let x be DC, 2/sqrt(5)=(sqrt(5)+x)/4, 8=5+sqrt(5)x, x=3/sqrt(5)=3/5 sqrt(5), and BC=4× 1/sqrt(5)=4/5 sqrt(5), thus the triangle is 3/5 sqrt(5)× 4/5 sqrt(5), and the area is 5× 3/5×4/5×1/2=6/5.😊

  • @zsoltszigeti758
    @zsoltszigeti758 10 місяців тому

    The (semi)circle is x^2+y^2=4, AC line is y=x/2+1. The solution of these are x=-2, y=0 (A point); x=6/5, y=8/5 (C point).

  • @deepaagarwal8743
    @deepaagarwal8743 10 місяців тому

    Sir can you plz upload some trigno and geometry high level questions

  • @saltydog584
    @saltydog584 10 місяців тому +1

    It would have been helpful if the fact that it is a quarter circle at the beginning by indicating angle EOB was a right angle on the original diagram at the beginning.

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 10 місяців тому

    1) Finding the Radius of the Quarter of a Circle:
    x^2 + 2x^2 = 5
    5x^2 = 5
    5x^2 - 5 = 0
    5*(x^2 - 1) = 0
    x^2 - 1 = 0
    x = 1
    Radius = 2 lu (linear units)
    2) Finding the Slope of the Straight Line passing the points C and D and points B and C:
    First Slope: m = (1 - 0) / (0 + 2) = 1/2
    m * m' = -1
    So, the 2nd Slope is m' = - 2
    3) Equations of the Straight Lines
    a) y = x/2 + 1
    b) y = - 2x + 4
    4) Point of Intersection (Point C); coordinates:
    x = 1,2
    y = 1,6
    4) Finding the Distances between Point C and D and Point B and C:
    CD ~ 1,342
    BC ~ 1,789
    5) Finding the Purple Area:
    PA = CD * BC / 2
    PA = 1,342 * 1,789 / 2
    PA = 2,400 / 2
    PA ~ 1,2 su
    Final Answer: Purple Area equal 1,2 su

    • @alokranjan4149
      @alokranjan4149 10 місяців тому +1

      Very Beautifully solved by using co-ordinate geometry. So nice 👍

  • @quigonkenny
    @quigonkenny 10 місяців тому

    Another, potentially easier way to measure the area of the larger triangle:
    We can tell by complementary angles that ∆ABC and ∆ADO are similar. By Pythagorean Theorem:
    AD² = OD² + OA²
    AD² = 1² + 2² = 5
    AD =√5
    CB/OD = AB/AD
    CB/1 = 4/√5
    CB = 4/√5
    AC = 2CB = 8/√5
    A = ½bh = ½(8/√5)(4/√5) = 16/5
    Aₚ= ∆ABC - ∆ABD = 16/5 - 2 = 6/5

  • @Dinhnguyen-km6zd
    @Dinhnguyen-km6zd Місяць тому

    S(ABD)=2=1/2 BD x BC. => BC=4/√ 5. Therom pytago=> CD=√ (9/5). End S(BCD) =√ (144/25) = 1,2

  • @ANNUANNU-b7f
    @ANNUANNU-b7f 8 місяців тому

    In which grade these questions. Come

  • @bigm383
    @bigm383 10 місяців тому +1

    Thanks Professor for a very nice problem.

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks❤️🌹

  • @uwelinzbauer3973
    @uwelinzbauer3973 10 місяців тому

    This one I also was able to find out. Again I used a way different from the video.
    This question was a bit challenging to me. But that's what we need to improve our skills. Thanks for the interesting video!
    Greetings 🙏

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 місяців тому +1

    CB=b...intanto calcolo r...(r/2)^2+r^2=5...r=2...poi imposto l'equazione risolutiva,..b=√5cos(arccos(b/2r)-arctg(1/2))..quindi ,calcolo l'altro cateto CD...e quindi l'area..... l'equazione diventa..b/2+√(1-b^2/16=b...b=4/√5...CD=√(5-16/5)=3/√5...A=(4/√5*3/√5)/2=6/5.... alleluia

    • @hermannschachner977
      @hermannschachner977 10 місяців тому

      bravo seppe, so denke auch ich (Österreich): 2,5 x sin 36,87.... x cos 36,87.... = 1.2

    • @PreMath
      @PreMath  10 місяців тому

      Thanks❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 10 місяців тому

    The raduis of the circle is 2 (easy, as evrerybody says). In an adapted orthonormal we have O(0;0), B(2;0) E(0;2) D(0;1) and C(2 cos(x); 2 sin(x)) where x is unknown between 0 and 90°
    Then VectorDC (2 cos(x); 2 sin(x) -1) and Vector BC (2 cos(x) -2; 2 sin(x)) . These vectors are orthogonal, so we heve:
    (2 cos(x)). (2 cos(x) -2) + (2 sin(x) -1). (2 sin(x)) = 0. We develop, use the fact that cos(x)^2 + sin(x)^2 = 1, and simplify.
    We obtain: 2 cos(x) + sin(x) = 1. This is a well known trigonometric equation.
    Let's divide by sqrt(5) and consider x0 between 0° and 90° as cos(x0) = 2/sqrt(5) and sin(x0) = 1/sqrt(5).
    We get cos(x0).cos(x) + sin(x0).sin(x) = cos(x0), or cos (x-x0) = cos(x0)
    Then x - x0 = x0 (mod 360°) or x -x0 = -x0 (mod 360°), giving that x = 2x0 is the only solution between 0° and 90°
    So, cos(x) = cos (2. x0) = 2 (cos(x0))^2 - 1 = 2. (4/5) - 1 = 3/5, and sin(x) = sin(2.x0) = 2. sin(x0). cos x0) = 2.(1/sqrt(5)). (2/sqrt(5)) = 4/5.
    Now we have point C (6/5; 8/5) and then Vector DC (6/5; 3/5), giving DC = sqrt ((36/25) + (9/25)) = sqrt(45)/5 = 3.sqrt(5)/5
    and also Vector BC (-4/5; 8/5), giving BC _ sqrt ((16/25) + (64/25)) = sqrt (80)/5 = 4.sqrt(5)/5
    The area of the triangle is (1/2). DC. BC = 6/5 when simplified.

    • @PreMath
      @PreMath  10 місяців тому

      Thanks❤️

  • @hemalathar8842
    @hemalathar8842 10 місяців тому

    Is it possible for them to ask this in 10th board exam?

  • @nunoalexandre6408
    @nunoalexandre6408 10 місяців тому

    Love it!!!!!!!!!!!!

    • @PreMath
      @PreMath  10 місяців тому

      Thanks❤️

  • @HeywoodUmanoff
    @HeywoodUmanoff 10 місяців тому

    How do we know that C, D and A are colinear?

  • @afshinfarzaadi1371
    @afshinfarzaadi1371 10 місяців тому

    👍

  • @vimsriani
    @vimsriani 10 місяців тому

    • @PreMath
      @PreMath  10 місяців тому

      Thanks❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 10 місяців тому

    radius r is easy to determine, r^2+r^2/4=5/4 r^2=5, r^2=4, r=2, but it is difficult to determine the area of the right angled triangle inscribed in the upper part of sector.😅

    • @PreMath
      @PreMath  10 місяців тому

      Thanks❤️

  • @frooooo7896
    @frooooo7896 10 місяців тому +1

    Why is the area not just 0.5 x 1 x 2. Since the sides of the pink triangle must be 2 and 1.?

    • @HeywoodUmanoff
      @HeywoodUmanoff 10 місяців тому

      As it turns out, the sides of the pink triangle don't have to be 2 and 1. In fact, the legs turn out to be 1.74 and 1.40, with the angle between the shorter leg and the hypotenuse = 51.14 degrees. This is different from the 63.43 degree angle between the shorter leg and hypotenuse of the 1, sqrt5 and 2 side lengths of right triangle DOB. I was thrown off by this issue initially as well.

  • @xsilata
    @xsilata 10 місяців тому

    Triangles AOD and ABC are similar.
    The calculation is easy.

  • @pralhadraochavan5179
    @pralhadraochavan5179 10 місяців тому

    Good evening sir

    • @PreMath
      @PreMath  10 місяців тому

      Hello dear ❤️

  • @RazvanMihaeanu
    @RazvanMihaeanu 10 місяців тому

    Thank God for the right angle 'cause otherwise... we would have been screwed!

  • @devondevon4366
    @devondevon4366 10 місяців тому

    1

  • @wackojacko3962
    @wackojacko3962 10 місяців тому +2

    If Schrodinger's Cat could have thought outside the box while inside the box, could the cat find the square root of a tree? Just curious...🙂

    • @billycox475
      @billycox475 10 місяців тому +3

      Well done, dad jokes always welcome!

    • @PreMath
      @PreMath  10 місяців тому +1

      Thanks❤️

  • @Weizsaecker
    @Weizsaecker 9 місяців тому

    0:23 Stop! How does he know that DE = DA? Is there a theorem describing a pythagorean triangle in a quarter circle?

  • @edsznyter1437
    @edsznyter1437 5 місяців тому

    You're really overcomplicating things.
    Triangles ADO and ACB are similar.
    The ratio of the hypotenuses is 4:Sqrt[5].
    Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5.
    [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.

  • @edsznyter1437
    @edsznyter1437 5 місяців тому

    You're really overcomplicating things.
    Triangles ADO and ACB are similar.
    The ratio of the hypotenuses is 4:Sqrt[5].
    Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5.
    [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.