Can you find the area of the Purple triangle? | (Important Geometry skills explained) |

Поділитися
Вставка
  • Опубліковано 7 січ 2025

КОМЕНТАРІ •

  • @robertbourke7935
    @robertbourke7935 Рік тому +6

    Got it! Many thanks. A clever exercise.

  • @ОльгаСоломашенко-ь6ы

    You can use the chord theorem. Extend the DO to the intersection with the circle and get the diameter. And the diameter is a chord. AD*DC=1*3. CD=3/√5. According to the Pythagorean theorem, we find CB=4/√5. S=0.5*(3/√5)*(4/√5)=1.2.

  • @johnsavard7583
    @johnsavard7583 Рік тому +2

    The first useful thing I note is that the vertical radius of the quadrant is divided into two equal parts by point D. So the white triangle below the purple triangle has sides r/2, r, and sqrt(5). That tells me r=2, and the area of that triangle is 1. Now if we extend the quadrant on the left to become a semicircle, line CD, when extended, will (because of the right angle) intercept the point opposite B on the diameter at the bottom; let's call that point X. Angle DBO and angle DXO are equal, and so the triangle BXC is similar to triangle DBO. Triangle DXO and triangle DBO have area 1 each. Triangle BXC has a hypoteneuse of 4 instead of sqrt(5), so its area is 1 times 16/5 because it is scaled up by a factor of 4 over sqrt(5). So the purple triangle has area 6/5, 16/5 minus 2 (which is 10/5).

  • @spafon7799
    @spafon7799 Рік тому +1

    Alternatively: find CD and CB in order to get the area of the triangle as 1/2 * CB*CD. As in the video solution, DO= r/2. Pythagorean on OBD gives (r/2)^2+r^2=5, thus OB=2 and OD=1. Also as in the given solution, extend CD to A, the left point of the circle. Now note that ABC and ADO are similar triangles, since angle AOD and ACB are right angles and OAD and CAB are the same acute angle. Let us call x= DC and y=CB. We have by similar triangles OA/DA=CA/BA. 2/sqrt(5)=(sqrt(5)+x)/4. This gives x=2/sqrt(5). Now you apply pythagorean to triangle BCD to get x^2+y^2=5. Thus 9/5+y^2=5=25/5. Or y^2=16/5 Thus y=4/sqrt(5). Area of the triangle is (1/2)*x*y= (1/2)*(3/sqrt(5))*(4/sqrt(5))= 6/5.

  • @zdrastvutye
    @zdrastvutye 8 місяців тому

    either calculate the intersection with a thales circle or calculate
    the coordinate product repeatedly:
    10 print "premath-can you find the area of the purple triangle"
    20 l1=sqr(5):r=2*l1/sqr(5):dim x(1,2),y(1,2):sw=r/(l1+r):w=sw
    30 @zoom%=@zoom%*1.4:xd=0:yd=r/2:xb=r:yb=0:n=r*r+l1^2:goto 60
    40 xc=r*cos(rad(w)):yc=r*sin(rad(w)):dgu1=(xd-xc)*(xb-xc)/n:dgu2=(yd-yc)*(yb-yc)/n
    50 dg=dgu1+dgu2:return
    60 gosub 40
    70 dg1=dg:w1=w:w=w+sw:w2=w:gosub 40:if dg1*dg>0 then 70
    80 w=(w1+w2)/2:gosub 40:if dg1*dg>0 then w1=w else w2=w
    90 if abs(dg)>1E-10 then 80
    100 print w:la=sqr((xd-xc)^2+(yd-yc)^2):lb=sqr((xc-xb)^2+(yc-yb)^2)
    110 x(0,0)=0:y(0,0)=0:x(0,1)=r:y(0,1)=0:x(0,2)=0:y(0,2)=r/2
    120 x(1,0)=0:y(1,0)=r/2:x(1,1)=r:y(1,1)=0:x(1,2)=xc:y(1,2)=yc
    130 ages=la*lb/2:print "die flaeche=";ages:mass=8E2/r:goto 150
    140 xbu=x*mass:ybu=y*mass:return
    150 for a=0 to 1:gcol8+a:x=x(a,0):y=y(a,0):gosub 140:xba=xbu:yba=ybu:for b=1 to 3
    160 ib=b:if ib=3 then ib=0
    170 x=x(a,ib):y=y(a,ib):gosub 140:xbn=xbu:ybn=ybu:goto 190
    180 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return
    190 gosub 180:next b:next a:gcol8:xba=0:yba=0:gosub 140:circle xba,yba,r*mass
    premath-can you find the area of the purple triangle
    53.1301024
    die flaeche=1.2
    >
    run in bbc basic sdl and hit ctrl tab to copy from the results window

  • @jimlocke9320
    @jimlocke9320 Рік тому +1

    We note that ΔABC and ΔADO are similar. The ratio of sides for ΔADO is (short-long-hypotenuse) is 1:2:√5 or 1/√5:2/√5:1. Applying that ratio to ΔABC and knowing that its hypotenuse is length 4, the two sides are (4)(1/√5) and (4)(2/√5). The area of ΔABC = (1/2)bh = (1/2)(4)(1/√5)(4)(2/√5) = 16/5. The areas of ΔADO and ΔBDO are (1/2)bh = (1/2)(1)(2) = 1 each. Area ΔBCD = Area ΔABC - Area ΔADO - Area ΔBDO = 16/5 - 1 - 1 = 6/5, as PreMath also found.

  • @phungpham1725
    @phungpham1725 Рік тому +1

    1/The radius of the circle= 2 ( it is easy)
    2/Extend CD to the left to build the right triangle ABC and the diameter AB.
    Notice that the angle CDB = 2 the angle DAO.
    We have tan DAO= 1/2 so tan CDB= 1/ (1-1/4) = 4/3----> BC/DC= 4/3 ------> the triangle BCD is an 3-4-5 triple-----> BC=4/5 BD and DC=3/5 BD
    The area of the purple triangle = 1/2x 4/5xsqrt5 x 3/5x sqrt5= 1.2 sq units
    3/ We can also use the Pythagorean theorem: Let CD and BC be a and b respectively. We have sq(sqrt5+a) + sqb = 16----> 5+sqa+ 2a sqrt5+sqb=16
    ---> 5+5+2a sqrt5=16-----> a= 3/sqrt5 and b= 4/sqrt5-----> area= 1/2 x 3/sqrt5 x 4/sqrt5 = 1.2 sq units

  • @saltydog584
    @saltydog584 Рік тому +1

    It would have been helpful if the fact that it is a quarter circle at the beginning by indicating angle EOB was a right angle on the original diagram at the beginning.

  • @tombufford136
    @tombufford136 10 місяців тому

    At a quick glance, started solving this in a similar way to the video forming a second Chord using Thales theorem. Then found working arduous without a drawing of the the semi circle. Thank you for the video.

  • @zsoltszigeti758
    @zsoltszigeti758 Рік тому

    The (semi)circle is x^2+y^2=4, AC line is y=x/2+1. The solution of these are x=-2, y=0 (A point); x=6/5, y=8/5 (C point).

  • @quigonkenny
    @quigonkenny Рік тому

    Another, potentially easier way to measure the area of the larger triangle:
    We can tell by complementary angles that ∆ABC and ∆ADO are similar. By Pythagorean Theorem:
    AD² = OD² + OA²
    AD² = 1² + 2² = 5
    AD =√5
    CB/OD = AB/AD
    CB/1 = 4/√5
    CB = 4/√5
    AC = 2CB = 8/√5
    A = ½bh = ½(8/√5)(4/√5) = 16/5
    Aₚ= ∆ABC - ∆ABD = 16/5 - 2 = 6/5

  • @bigm383
    @bigm383 Рік тому +1

    Thanks Professor for a very nice problem.

    • @PreMath
      @PreMath  Рік тому +1

      Thanks❤️🌹

  • @uwelinzbauer3973
    @uwelinzbauer3973 Рік тому

    This one I also was able to find out. Again I used a way different from the video.
    This question was a bit challenging to me. But that's what we need to improve our skills. Thanks for the interesting video!
    Greetings 🙏

  • @awandrew11
    @awandrew11 Рік тому +3

    BC=2, DC=1, therefore DB=Square root 5, Area opf triangleBCD=CBxCD/2=2x1/2=1!?

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Рік тому

    1) Finding the Radius of the Quarter of a Circle:
    x^2 + 2x^2 = 5
    5x^2 = 5
    5x^2 - 5 = 0
    5*(x^2 - 1) = 0
    x^2 - 1 = 0
    x = 1
    Radius = 2 lu (linear units)
    2) Finding the Slope of the Straight Line passing the points C and D and points B and C:
    First Slope: m = (1 - 0) / (0 + 2) = 1/2
    m * m' = -1
    So, the 2nd Slope is m' = - 2
    3) Equations of the Straight Lines
    a) y = x/2 + 1
    b) y = - 2x + 4
    4) Point of Intersection (Point C); coordinates:
    x = 1,2
    y = 1,6
    4) Finding the Distances between Point C and D and Point B and C:
    CD ~ 1,342
    BC ~ 1,789
    5) Finding the Purple Area:
    PA = CD * BC / 2
    PA = 1,342 * 1,789 / 2
    PA = 2,400 / 2
    PA ~ 1,2 su
    Final Answer: Purple Area equal 1,2 su

    • @alokranjan4149
      @alokranjan4149 Рік тому +1

      Very Beautifully solved by using co-ordinate geometry. So nice 👍

  • @linzhaoxu
    @linzhaoxu 5 місяців тому

    CD=a,BC=b,so a=root(5-bsqr); (a+root5)sqr+b sqr=4sqr; {(root(5-b sqr)+root5}sqr+b sqr=16; so b=4/root5; so a=3/root5, so the sqr about purple zone is 6/5

  • @deepaagarwal8743
    @deepaagarwal8743 Рік тому

    Sir can you plz upload some trigno and geometry high level questions

  • @jakkima1067
    @jakkima1067 2 місяці тому

    AD*DC=(R+1)*1=Sqrt(5)*DC=3. DC=3/Sqrt(5). CB^2=DB^2-DC^2=5-9/5=16/5. CB =4/Sqrt(5). Area=DC*CB=3/Sqrt(5)*4/Sqrt(5)/2=12/10=1,2.

  • @ProfessorDBehrman
    @ProfessorDBehrman Рік тому

    Nice problem. Thanks.

  • @marcgriselhubert3915
    @marcgriselhubert3915 Рік тому

    The raduis of the circle is 2 (easy, as evrerybody says). In an adapted orthonormal we have O(0;0), B(2;0) E(0;2) D(0;1) and C(2 cos(x); 2 sin(x)) where x is unknown between 0 and 90°
    Then VectorDC (2 cos(x); 2 sin(x) -1) and Vector BC (2 cos(x) -2; 2 sin(x)) . These vectors are orthogonal, so we heve:
    (2 cos(x)). (2 cos(x) -2) + (2 sin(x) -1). (2 sin(x)) = 0. We develop, use the fact that cos(x)^2 + sin(x)^2 = 1, and simplify.
    We obtain: 2 cos(x) + sin(x) = 1. This is a well known trigonometric equation.
    Let's divide by sqrt(5) and consider x0 between 0° and 90° as cos(x0) = 2/sqrt(5) and sin(x0) = 1/sqrt(5).
    We get cos(x0).cos(x) + sin(x0).sin(x) = cos(x0), or cos (x-x0) = cos(x0)
    Then x - x0 = x0 (mod 360°) or x -x0 = -x0 (mod 360°), giving that x = 2x0 is the only solution between 0° and 90°
    So, cos(x) = cos (2. x0) = 2 (cos(x0))^2 - 1 = 2. (4/5) - 1 = 3/5, and sin(x) = sin(2.x0) = 2. sin(x0). cos x0) = 2.(1/sqrt(5)). (2/sqrt(5)) = 4/5.
    Now we have point C (6/5; 8/5) and then Vector DC (6/5; 3/5), giving DC = sqrt ((36/25) + (9/25)) = sqrt(45)/5 = 3.sqrt(5)/5
    and also Vector BC (-4/5; 8/5), giving BC _ sqrt ((16/25) + (64/25)) = sqrt (80)/5 = 4.sqrt(5)/5
    The area of the triangle is (1/2). DC. BC = 6/5 when simplified.

  • @frooooo7896
    @frooooo7896 Рік тому +1

    Why is the area not just 0.5 x 1 x 2. Since the sides of the pink triangle must be 2 and 1.?

    • @HeywoodUmanoff
      @HeywoodUmanoff Рік тому

      As it turns out, the sides of the pink triangle don't have to be 2 and 1. In fact, the legs turn out to be 1.74 and 1.40, with the angle between the shorter leg and the hypotenuse = 51.14 degrees. This is different from the 63.43 degree angle between the shorter leg and hypotenuse of the 1, sqrt5 and 2 side lengths of right triangle DOB. I was thrown off by this issue initially as well.

  • @HeywoodUmanoff
    @HeywoodUmanoff Рік тому

    How do we know that C, D and A are colinear?

  • @nunoalexandre6408
    @nunoalexandre6408 Рік тому

    Love it!!!!!!!!!!!!

  • @LIFEUNFILTEREDb7f
    @LIFEUNFILTEREDb7f 9 місяців тому

    In which grade these questions. Come

  • @DB-lg5sq
    @DB-lg5sq Рік тому +1

    شكرا لكم
    DC=a
    AD=جذر5
    BC=(5-a^2)جذر
    AB=4
    .....
    a=3/(5جذر)
    S=1/2 CB CA =6/5

  • @hemalathar8842
    @hemalathar8842 Рік тому

    Is it possible for them to ask this in 10th board exam?

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому +1

    CB=b...intanto calcolo r...(r/2)^2+r^2=5...r=2...poi imposto l'equazione risolutiva,..b=√5cos(arccos(b/2r)-arctg(1/2))..quindi ,calcolo l'altro cateto CD...e quindi l'area..... l'equazione diventa..b/2+√(1-b^2/16=b...b=4/√5...CD=√(5-16/5)=3/√5...A=(4/√5*3/√5)/2=6/5.... alleluia

    • @hermannschachner977
      @hermannschachner977 Рік тому

      bravo seppe, so denke auch ich (Österreich): 2,5 x sin 36,87.... x cos 36,87.... = 1.2

    • @PreMath
      @PreMath  Рік тому

      Thanks❤️

  • @Weizsaecker
    @Weizsaecker 11 місяців тому

    0:23 Stop! How does he know that DE = DA? Is there a theorem describing a pythagorean triangle in a quarter circle?

  • @xsilata
    @xsilata Рік тому

    Triangles AOD and ABC are similar.
    The calculation is easy.

  • @afshinfarzaadi1371
    @afshinfarzaadi1371 Рік тому

    👍

  • @pralhadraochavan5179
    @pralhadraochavan5179 Рік тому

    Good evening sir

  • @wackojacko3962
    @wackojacko3962 Рік тому +2

    If Schrodinger's Cat could have thought outside the box while inside the box, could the cat find the square root of a tree? Just curious...🙂

    • @billycox475
      @billycox475 Рік тому +3

      Well done, dad jokes always welcome!

    • @PreMath
      @PreMath  Рік тому +1

      Thanks❤️

  • @RazvanMihaeanu
    @RazvanMihaeanu Рік тому

    Thank God for the right angle 'cause otherwise... we would have been screwed!

  • @vimsriani
    @vimsriani Рік тому

  • @edsznyter1437
    @edsznyter1437 7 місяців тому

    You're really overcomplicating things.
    Triangles ADO and ACB are similar.
    The ratio of the hypotenuses is 4:Sqrt[5].
    Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5.
    [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.

  • @devondevon4366
    @devondevon4366 Рік тому

    1

  • @edsznyter1437
    @edsznyter1437 7 місяців тому

    You're really overcomplicating things.
    Triangles ADO and ACB are similar.
    The ratio of the hypotenuses is 4:Sqrt[5].
    Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5.
    [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.