Find the radius of the semicircle | A Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 22 лис 2024
  • GET MY EBOOKS
    •••••••••••••••••••••••
    150 Challenging Puzzles with Solutions : payhip.com/b/y...
    Function : payhip.com/b/y...
    Sequence and Series : payhip.com/b/B...
    Differentiation : payhip.com/b/W...
    Indefinite Integration : payhip.com/b/8...
    Definite Integration + Area under the Curve : payhip.com/b/1...
    Trigonometry : payhip.com/b/8...
    OTHER CHAPTERS : COMING SOON.....
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

КОМЕНТАРІ • 21

  • @marioalb9726
    @marioalb9726 27 днів тому +2

    Segment AC= 'a' ; Segment BC= 'b'
    Similarity of triangles:
    b/10=3/R
    b² = 900/R²
    Pytagorean theorem:
    a² + b² = (2R)²
    b² = 4R² - 10²
    Equalling :
    900/R² = 4R² - 100
    4R⁴ - 100R² - 900 = 0
    R⁴ - 25R² - 225 = 0
    R = 5,659 cm ( Solved √ )

    • @user-xz7sv2dn9g
      @user-xz7sv2dn9g 25 днів тому

      Very good solved. More easy thsn Our " teacher"

    • @marioalb9726
      @marioalb9726 25 днів тому +1

      @@user-xz7sv2dn9g
      Thanks for your comment
      See below the easiest solution:
      cosα = R/c = 10/(2R) --> R² = 5c
      Pytagorean theorem:
      c² = R² + 3² = 5c + 9
      c² - 5c - 9 = 0 --> c= 6,4051cm
      R = 6,659 cm ( Solved √ )

  • @raghvendrasingh1289
    @raghvendrasingh1289 27 днів тому +2

    Nice problem
    In triangle AOP
    tan A = 3/x
    In triangle ACB
    sec A = 2x/10 = x/5
    eliminating A
    x^2/25 - 9/( x^2) = 1
    x^4- 25 x^2- 225 =9
    rest follows at once.

  • @santiagoarosam430
    @santiagoarosam430 26 днів тому

    M es el punto medio de AC ; OM=a ---> 5/r=a/3---> a=15/r ---> 5²=(r-a)(r+a)---> r=√[(25+5√61)/2] =5,66.
    Gracias y saludos

  • @marioalb9726
    @marioalb9726 27 днів тому +1

    cosα = 10/(2R) ; cos²α = 25/R²
    Intersecting chords theorem:
    (R+3cosα)(R-3cosα) = (½10)²
    R² - 9.cos²α = 5²
    R² - 9.(25/R²) = 25
    R⁴ - 25R² - 225 = 0
    R = 5,659 cm ( Solved √ )

  • @marioalb9726
    @marioalb9726 27 днів тому +1

    cosα = R/c = 10/(2R) --> R² = 5c
    Pytagorean theorem:
    c² = R² + 3² = 5c + 9
    c² - 5c - 9 = 0 --> c= 6,4051cm
    R = 6,659 cm ( Solved √ )

  • @xz1891
    @xz1891 26 днів тому +1

    R^2-25=9-[root(9+R^2)-25]^2

  • @soli9mana-soli4953
    @soli9mana-soli4953 27 днів тому

    extending the line AC in the upper part until it intersects the perpendicular to AB from B, at the intersection point D, we obtain the right-angled triangle ABD which has sides twice the sides of AOP. Therefore if OP = 3 it follows that DB = 6
    Let DC = x and apply the tangent-secant theorem from the external point D
    6² = (10+x)*x
    x² + 10x - 36 = 0
    x = √ 61 - 5
    AD = 10 + √ 61 - 5 = 5 + √ 61
    we apply the Pythagorean theorem on ABD
    (2r)² = (5 + √ 61)² - 6²
    r² = (25 + 5√ 61)/2

  • @marioalb9726
    @marioalb9726 27 днів тому +1

    cosα= 10/(2R) ; tanα= 3/R
    R = 5/cosα = 3/tanα
    5/3 sinα = cos²α = 1 - sin²α
    sin²α + 5/3 sinα - 1 = 0
    sin α = 0,46837 --> α = 27,929°
    R = 5,659 cm ( Solved √ )

  • @ДмитрийИвашкевич-я8т

    AP=x.
    R^2+9=x^2
    ∆APO~∆ACB
    10/(2R)=R/x
    R^2=5x
    x^2-9=5x
    x=(5+√61)/2
    R^2=5x=(25+5√61)/2

  • @michaeldoerr5810
    @michaeldoerr5810 27 днів тому

    The answer is x = sqrt((25+5*sqrt(61))/2). Also I really have to say that it would be nice if there was a mnemonic device for HL similarity that involve the 90° and the common angle because I have always noticed that the similarity rules are simply the first two letters of the similar triangles are ratioed and then the first and last letters of the similar triangles that get ratioed.

  • @SGuerra
    @SGuerra 27 днів тому

    A questão é muito boa. Parabéns.

  • @wes9627
    @wes9627 27 днів тому

    x/3=10/BC and 4x^2=100+BC^2=100+900/x^2.
    Thus, 4x^4-100x^2-900=0 or x^4-25x^2-225=0;
    x^2=(25+5√61)/2 and x=√[(25+5√61)/2]=5.65912... units.

  • @quigonkenny
    @quigonkenny 27 днів тому

    Draw BC. By Thales' Theorem, as A and B are ends of a diameter and C is a point on the circumference of semicircle O, then ∠BCA = 90°. As ∠BCA = ∠AOP = 90° and ∠A is common, ∆BCA and ∆AOP are similar triangles.
    Triangle ∆AOP:
    OA² + OP² = PA²
    x² + 3² = PA²
    PA² = x² + 9
    PA = √(x²+9)
    Triangle ∆BCA:
    BC² + CA² = AB²
    BC² + 10² = (2x)²
    BC² + 100 = 4x²
    BC² = 4x² - 100
    BC = √(4x²-100)
    BC/AB = OP/PA
    √(4x²-100)/2x = 3/√(x²+9)
    √(4x²-100)√(x²+9) = 6x
    (4x²-100)(x²+9) = 36x²
    4x⁴ + 36x² - 100x² - 900 - 36x² = 0
    4x⁴ -100x² - 900 = 0
    x⁴ - 25x² - 225 = 0
    x² = [-(-25)±√(-25)²-4(1)(-225)]/2(1)
    x² = 25/2 ± √(625-900)/2
    x² = 25/2 ± √1525/2 = (25±5√61)/2
    x² = (25+5√61)/2 | x² = (25-5√61)/2 ❌ x² > 0
    x = √((25+5√61)/2)
    x = √(50+10√61)/2 ≈ 5.659 units

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 27 днів тому

    (10)^2 (3)^2={100+9}=109 180°ABCPO/109=1.71ABCPO 1.71^1 1.71 (ABCPO ➖ 71ABCPO+1).

  • @cyruschang1904
    @cyruschang1904 26 днів тому

    cosθ = 10/2r = 5/r
    (sinθ)/(cosθ) = 3/r = (sinθ)r/5
    (sinθ) = 15/r^2
    (5/r)^2 + (15/r^2)^2 = 1
    25/r^2 + 225/r^4 = 1
    r^4 - 25r^2 - 225 = 0
    let r^2 = x
    x^2 - 25x - 225 = 0
    x = (25 + 5✓61)/2
    r = ✓(50 + 10✓61)/2

  • @prossvay8744
    @prossvay8744 27 днів тому

    3/R=BC/10
    BC=30/R
    100+(30/R)^2=(2R)^2
    So R=5.66 units.

  • @giuseppemalaguti435
    @giuseppemalaguti435 27 днів тому

    2rcosθ=10..3/r=tgθ...rcosθ=5..r^2=25(secθ)^2=25(1+9/r^2)..r^4=25(r^2+9)..r^2=(25+√1525)/2=(25+5√61)/2

  • @jussikunnari9187
    @jussikunnari9187 26 днів тому

    Square root 91

  • @mikefoehr235
    @mikefoehr235 26 днів тому

    Rad= root of 91