Derivative of sin(x) and cos(x), PROOF

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 145

  • @alexdarcovich9349
    @alexdarcovich9349 6 років тому +193

    "sine and cosine are like homies" #yay

  • @PackSciences
    @PackSciences 6 років тому +234

    I saw a student using L'Hospital for this, it made me really angry because he used sin'(x) to calculate sin'(x)

    • @Bodyknock
      @Bodyknock 6 років тому +12

      PackSciences Hypothetically it might be possible to use LH’s rule to simultaneously calculate sin’ and cos’ if it results in two expressions with two unknowns, much like using implicit differentiation where you have a derivative on both sides of an equation and solve for the derivative.
      In this case you end up with sin’(x) = sin(x)cos’(0) + cos(x)sin’(0) and since cos(x+h) - cos (x) = cos(x)sin(h) - sin(x)cos(h) - cos(x) you get cos’(x) = cos(x)sin’(0) - sin(x)cos’(0). Whether or not you could use those two equations to simplify out the sin’(x) and cos’(x) values in terms of sin(x) and cos(x) is another question, but on the face of it this sort of method isn’t completely out of line in general.

    • @metalsunsuccess-7868
      @metalsunsuccess-7868 2 роки тому +3

      It wouldn't be perfect wrong.

    • @Arycke
      @Arycke Рік тому +6

      Not good to get angry at students for trying. Simply guide them in the right direction and explain why you can't use circular reasoning (to some, it isn't obvious and it should be explicitly stated nonetheless). Anger makes most people not want to learn fron you in a teaching setting.

    • @Supportindiangamingcommunity
      @Supportindiangamingcommunity Рік тому +2

      leave your teaching carrier 👍🙂

    • @sevopaper984
      @sevopaper984 6 місяців тому

      I know this comment is 5 years old but this method asumes that the derivative exists in the first place, which might not be true.​@@Bodyknock

  • @Engeneeringtips
    @Engeneeringtips 6 років тому +32

    You can also use the identity sin^2 + cos^2 = 1 and derive both sides then you got (sin^2 + cos^2) ‘ = 0 and (cos^2) ‘ = -(sin^2)’ so 2cos*(cos)’ = -2sincos and so (cos)’ = -sin

    • @elbonais683
      @elbonais683 Рік тому +5

      GODDAMMIT, IT'S THAT EASY?

    • @Engeneeringtips
      @Engeneeringtips Рік тому +4

      May sound complicated but this is to show that you can use and play with identities to prove common relation in maths :)

    • @asenazaleas3161
      @asenazaleas3161 Рік тому +6

      @@elbonais683you take d/dx(sinx) = cosx for granted, but it's still cool

  • @JuditaKindlova
    @JuditaKindlova 4 роки тому +61

    Prefect! I didn't know that cosine stands for complement of sine. Thanks for the video!

    • @HalifaxHercules
      @HalifaxHercules Рік тому +2

      Sine and Cosine are basically opposites.
      It explains why the Tangent is the same as Sine/Cosine.
      It also explains why the Tangent of 90 degrees is undefined as Sine of 90 is 1 and Cosine of 90 is 0, so 1/0 is undefined.

  • @rishisivakumar2013
    @rishisivakumar2013 6 років тому +53

    Can u do that proof of cosh-1/h and sinh/h

    • @tejaswiniattada1531
      @tejaswiniattada1531 2 роки тому +1

      Sinx/x value is 1 and cosh-1/h substitute h value

    • @zen4939
      @zen4939 4 місяці тому

      Since you might know sinh/h is equal to 1 but for (cosh-1)/h we can solve it like
      lim [h tends to 0] (cosh -1)/h
      We can use the trigonometric function of cos2x just substitute 2x by h and we can break it into sine functions as cosh=1-2sin²(h/2)
      So next we just substitute cosh in the above equation as
      [1-2sin²(h/2)-1]/h
      = -2sin²(h/2)/h
      And now using limits
      lim [h tends to 0] -2 [sin²(h/2)/(h/2)² × h/4
      Again [sin(h/2)/(h/2)]² is equal to 1
      Therefore lim [h tends to 0] -h/2 which after putting the value of the limit we get 0

  • @darnellyiadom3596
    @darnellyiadom3596 6 років тому +46

    Student: I'm so smart, I know how to derive all the trig function derivatives
    Bprp: Really? Can you show me it for sin and cos then
    Student: ...
    #yay

    • @lakshya4876
      @lakshya4876 9 місяців тому

      What's up with that hashtag

  • @h4c_18
    @h4c_18 6 років тому +10

    I ended with lim as h->0 cos(x)*sin(h/2)/(h/2). Using some tricks with the e^iz formula xD.

  • @levi2732
    @levi2732 4 роки тому +2

    2:05 for those ho want to understand how he get the rule; go watch videos about addition and soustraction for cosinus and sinus cos(a+b) cos(a-b) sinus (a+b) sinus (a-b) it s kinda difficult but you will understand it ; then after that get back to the video

  • @redone3647
    @redone3647 2 роки тому +2

    Thanks a lot sir .
    Amazing explaintion 😀

  • @Alisha-lx8ir
    @Alisha-lx8ir Рік тому +1

    God bless you instead lecture was superb 👏🏻👏🏻

  • @harshsinghbaghel8753
    @harshsinghbaghel8753 9 місяців тому

    Best teacher in world ❤

  • @ammulureddy5108
    @ammulureddy5108 5 років тому +1

    I understand good 😊😊😋😋

  • @HamedAbdulla
    @HamedAbdulla 6 років тому +27

    In summary, It's like 19÷4 = 19/4

  • @ckmishn3664
    @ckmishn3664 6 років тому +4

    Why not do the derivative based on the Maclaurin series for since and cosine? The approach you used here has the issue that, without the numerical ✋ waving you might have been stuck with L'Hospital's rule, essentially needing to know the answer to the derivative you were trying to find.
    Maybe there's a non-circular, rigorous way to solve the "0/0" limits without L'Hospital's rule, but it didn't come readily to mind.

    • @leadnitrate2194
      @leadnitrate2194 4 роки тому

      Sir, with due respect, people like me who are new to calculus and just learning the derivatives of the trig functions often wonder how these derivatives came about. And while this might not be the most rigorous proof out there, it is more accessible, and, as you say, may be proved to be rigorous. Which is why I'm grateful to BPRP for this video.

    • @sneedle252
      @sneedle252 Рік тому

      Please correct me if this is not the case: Don't the Maclaurin series for sin and cos require the result in the above proof to start with?

  • @Rudea_200
    @Rudea_200 3 роки тому +1

    Really good

  • @15schaa
    @15schaa 6 років тому +1

    This is pretty neat. #yay

  • @gagadaddy8713
    @gagadaddy8713 6 років тому +8

    Master Cao, no explanation of why (cos(h)-1)/h tend to 0 when h tend to 0

    • @novidsonmychanneljustcomme5753
      @novidsonmychanneljustcomme5753 6 років тому

      Gaga Daddy 5:35 He is aware of this, but it would have been too much for this video to explain this in detail. I'm sure he is able to show this extra proof if he wants to.

    • @gagadaddy8713
      @gagadaddy8713 6 років тому

      @novidsonmychannel, hi! thank for your advise! I am not challenge Master Cao for ignoring the Limit part. The Point here is: lim(h->0) cos(h)-1/h goes to zero can be applied L'Hospital rule, easily. However, if we do so, it go back to the origin point - we want to work out the derivative of sin and cos function from fundamental. This is MY dilemma! ... and this' why I asked this question... sorry if there is any clever way which I am not aware!

    • @novidsonmychanneljustcomme5753
      @novidsonmychanneljustcomme5753 6 років тому

      Gaga Daddy No problem. ;) I can understand what you mean. And I admit that I don't know another "clever" way either. I only can sketch an idea of a "proof" for the two limits: We know that sin(0) = 0 and sin(h) is approximately equal to h for abs(h) 0 ((cos(h))'/1) = 0/1 = 0. I am aware that every mathematician would scream seeing this "proof", but since I'm studying a physical subject please forgive me. :P At least for me it is sufficient if I find ways like these to understand the mathematical backgrounds.

    • @gagadaddy8713
      @gagadaddy8713 6 років тому

      @novidsonmychannel, thank Physicist! Hope u be another Hall of Fame in your professional area! :)

    • @novidsonmychanneljustcomme5753
      @novidsonmychanneljustcomme5753 6 років тому

      You're welcome, thank you too! :)

  • @MathForLife
    @MathForLife 6 років тому +3

    Nice video!!

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      MathForLife thanks! And glad to see you back!!

    • @MathForLife
      @MathForLife 6 років тому +1

      blackpenredpen thanks! I was moving to Berkeley:)

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      MathForLife nice!!! How you like it there so far??

    • @MathForLife
      @MathForLife 6 років тому

      blackpenredpen I love it!! Everything is so close:)

  • @melakhiwotaberadinke6423
    @melakhiwotaberadinke6423 2 роки тому

    You are my Best 👌 👍 😍

  • @FFF666GP
    @FFF666GP 3 роки тому

    A more elegant and compact proof exists which uses the identity SinC - SinD = 2Sin(C-D)/2*Cos(C+D)/2 together with the limit Sinh/h ➡️ 1 as h ➡️ 0.
    Note, C = (x + h) and D = x.
    Substitution: lim h ➡️ 0 (2Sinh/2h)*(Cos((2x+h)/2)) evaluates to (1)*(Cos(2x/2)) which, in turn, evaluates to Cosx.

    • @Lagrangianon3
      @Lagrangianon3 Місяць тому

      Where does this identity come from? I found it in Piskounov

  • @alejrandom6592
    @alejrandom6592 4 роки тому +2

    Nice! I hadn't thought about using complementary identity to prove the derivative of cos(x)

  • @jackkalver4644
    @jackkalver4644 5 місяців тому

    I figured out two proofs that don’t use the limit of sin x/x, the limit of (cos x-1)/x, or any angle-sum identity. One uses the definition of arc length (as well as the Pythagorean theorem, the fundamental theorem of calculus, and the derivative of sqrt(1-x^2)), but the other one just uses the parametric definition of a derivative (d[x,y]/dt=[dx/dt,dy/dt]). If I ever teach a math class, I will be looking for one of those.

  • @MrLuigiBean1
    @MrLuigiBean1 6 років тому +2

    This is really neat! Glad I found this! =D

  • @ankursrivastava2809
    @ankursrivastava2809 2 роки тому +1

    You can also use the expansion of sinx and it is very easy with that approch

  • @zmfhdl
    @zmfhdl 4 роки тому +2

    Finally, a video that I can understand xD

  • @pronk4321
    @pronk4321 2 роки тому +1

    saving lives in 2022 T-T thank you for this

  • @joshuapaulorigenes1936
    @joshuapaulorigenes1936 6 років тому +6

    Can you prove
    tan(x+y) = [tan(x)+tan(y)]/[1-tan(x)tan(y)]? BTW thanks so much, I learned much in your videos.

    • @leadnitrate2194
      @leadnitrate2194 4 роки тому

      That directly follows from tan(x+y)= sin(x+y)/ cos(x+y)
      Just give it a try.

    • @itookashower3485
      @itookashower3485 2 роки тому

      @@leadnitrate2194 what about sin(x+y)??? its proof

    • @leadnitrate2194
      @leadnitrate2194 2 роки тому

      @@itookashower3485 the proof requires a few illustrations, so I can't outline it in the comments.
      But this video by bprp shows it very well
      ua-cam.com/video/2SlvKnlVx7U/v-deo.html
      Hope it helps

    • @leadnitrate2194
      @leadnitrate2194 2 роки тому

      @@itookashower3485 you can also prove it by writing sin θ= {e^(iθ) - e^(-iθ)}/2 and cos θ = {e^(iθ) + e^(-iθ)}/2 but I don't know if you've studied complex numbers yet.

  • @wierzbi8568
    @wierzbi8568 6 років тому +7

    I wonder where trig identities come from, would you please explain us? Thanks :) #yay

    • @blackpenredpen
      @blackpenredpen  6 років тому +4

      Wierzbi sure. It's here ua-cam.com/video/2SlvKnlVx7U/v-deo.html

  • @mohammednourinjerini3816
    @mohammednourinjerini3816 6 років тому +1

    It is nice
    Thank you so much

  • @mariomario-ih6mn
    @mariomario-ih6mn 5 років тому +15

    I am not an adult I'm 12

  • @ghostgaming7378
    @ghostgaming7378 9 місяців тому +1

    Why write cos(h) please tell me sir 1:59 video please explain Sir

    • @drshiii
      @drshiii 4 місяці тому

      Did you get it already? If not, I think it is because sin(x+h) has an equivalent identity which is sin(x)cos(h)+cos(x)sin(h)
      In trigo, it is written as
      sin(a±b) = sin(a)cos(b) ± cos(a)sin(b)
      correct me if I'm wrong. thanks

    • @pentasquare
      @pentasquare Місяць тому

      You're correct

  • @jannesl9128
    @jannesl9128 6 років тому +1

    Just a little question:
    Couldn't you just say
    cos(h) approaches h
    and
    sin(h) approaches (1+h)
    ?
    The result is the right one but we got the answer in less steps. #yay

    • @jannesl9128
      @jannesl9128 6 років тому

      Could somebody please give me an answer? :o

  • @Ffgamingfullonrush
    @Ffgamingfullonrush 6 місяців тому

    Thank u sir ❤🎉

  • @banderfargoyl
    @banderfargoyl 6 років тому +13

    Since we're all adults now... Tee-hee! 😁

  • @ListentoGallegos
    @ListentoGallegos 6 років тому +2

    can you use the definition of the derivative for e^x??

    • @egeyaman4074
      @egeyaman4074 5 років тому

      e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!...
      e^x=sum x^n/n! ]0-inf
      Take derivative of that

  • @Metalhammer1993
    @Metalhammer1993 6 років тому +1

    well for the definition of the derivative i tend to do a "useless" extra step. i write the limit but the denominator (anyone with eyes will see why it´s "useless") i´ll write down "x-x+h" ofc it is just h. i´m aware of that. but i just want that pair of f(x) in the numerator amd x in the denominator and f(x+h) in the denominator ans x+h in the numerator just to show that this is nothing but the slope of a line between two points. and then, when this is clear we can kill the x-x in the denominator like a sensible human being and get to work but okay i´m a maths tutor so i show it to kids. Not adults who have their own fair share of mathematical knowledge. sow there is no need to link it to previously learned things this strongly. YOur viewers would appreciate something brand new as well as something build on a foundation they already have.

  • @zahidlala5340
    @zahidlala5340 3 роки тому

    Thank sir for guiding

  • @Akumansion
    @Akumansion 3 роки тому

    the doraemon theme playing at the start is just awesome

  • @dolevgo8535
    @dolevgo8535 6 років тому +1

    this video really reminded me on an older one of yours. you even said they're like homies. :)
    #YAY

  • @mdezazkhan4772
    @mdezazkhan4772 3 роки тому

    Thanks sir, well explained ❤️❤️❤️

  • @rashmisrivastava5261
    @rashmisrivastava5261 4 роки тому +1

    Hey brother could you please provide a geometrical proof ?(actually, I was anticipating for one such proof........ )

    • @thatmathkid-anthony6658
      @thatmathkid-anthony6658 4 роки тому

      This is a very good video. I have the geometrical proof in my video here. ua-cam.com/video/64dguvQBwUQ/v-deo.html

  • @novidsonmychanneljustcomme5753
    @novidsonmychanneljustcomme5753 6 років тому +3

    Another alternative way to compute (cos(x))' if you already know (sin(x))', would also be to use cos(x) = sqrt(1-(sin(x))^2) and then the chain rule - works as well, I tried it. ;)

    • @novidsonmychanneljustcomme5753
      @novidsonmychanneljustcomme5753 6 років тому +2

      And of course you could also use the definition sin(x) = (1/(2i))(e^(-ix) - e^(ix)) by using the chain rule - if you are aware of the derivative of e^x and the definition cos(x) = (1/2)(e^(-ix)+e^(ix)) so that you can recognize it in your result. This is much faster, but of course you're aware of this and on the other hand I also like it to find non-complex proofs for real functions - especially if you explain it to students who don't already know complex numbers.

  • @biakmuantonsing381
    @biakmuantonsing381 3 роки тому

    Amazing

  • @yashvardhan6521
    @yashvardhan6521 4 роки тому

    Which company 's markers do u use??

  • @GlamourCat1920
    @GlamourCat1920 4 роки тому

    You are undoubtedly a cool human! 😎

  • @VishalSingh-nn4ne
    @VishalSingh-nn4ne 3 роки тому

    Pls someone explain me 3:43 how (sin(h)-1)/h become zero because when I calculated it on calculator the value show very large.

    • @wkmars
      @wkmars 11 місяців тому

      Very late answer, but its (cos(h) - 1)/h that approach 0, not (sin(h) - 1)/h

  • @shenzhen8302
    @shenzhen8302 Рік тому +1

    how to proof the lim for (cost(h)-1)/h is 0? 0/0=infinite

  • @i_am_anxious02
    @i_am_anxious02 5 років тому +1

    I use the complex definitions

  • @VilemJankovsky
    @VilemJankovsky 6 років тому +1

    Can you do an indefinite integral of cos(tan(sec(x)))? All calculators stuck on this.

    • @heinzanderson462
      @heinzanderson462 6 років тому

      no elementary function in terms of standard mathematical

    • @VilemJankovsky
      @VilemJankovsky 6 років тому

      Heinz Anderson what?

    • @heinzanderson462
      @heinzanderson462 6 років тому

      you can not present the solution in a closed form

    • @novidsonmychanneljustcomme5753
      @novidsonmychanneljustcomme5753 6 років тому

      Vilém Jankovský There are already more than enough more "simple" functions which have no explicit indefinite integral, in other words no anti-derivative in terms of elementary functions. e^(x^2), sin(x^2), 1/(ln(x)) - just to name some. Every calculator would stuck on these as well.

    • @VilemJankovsky
      @VilemJankovsky 6 років тому

      novidsonmychannel justcommenting Oh, thank you.

  • @SurinderKumar-os5il
    @SurinderKumar-os5il Рік тому

    Sir,
    What is dα/ dx of sec α

  • @samraurooj3414
    @samraurooj3414 4 роки тому

    Thank you ☺️

  • @anything6889
    @anything6889 6 років тому +1

    The limit of (f(x+h) - f(x)) /h
    Where did it come from??

  • @anshsahni6263
    @anshsahni6263 5 років тому +2

    We can also do this using Series expansion of Sinx then taking derivative of Intial terms

  • @EMorgensztern
    @EMorgensztern 6 років тому +1

    can you find the continuity (or not) of y=x^(1/x) from -inf to 0 ?
    I love your videos about complex #

    • @dolevgo8535
      @dolevgo8535 6 років тому +1

      non-continuous, plug in x=-2

    • @antimatter2376
      @antimatter2376 6 років тому +1

      I don't think it's continuous because some are complex but at -1 it's not

    • @dekrain
      @dekrain 6 років тому +1

      @Jordan Saenz: y at -1 is also complex, so is at 1, 2, R & C

    • @antimatter2376
      @antimatter2376 6 років тому +1

      Dawid Krainski oh yeah it is oops

  • @littlescience7855
    @littlescience7855 2 роки тому

    I still wonder how derivative of sinx can be cosx . Is it possible to proof the derivative of sinx is cosx from graph of it

  • @renugas3162
    @renugas3162 3 роки тому

    Sir
    What is the answer of
    -d/dx cos x
    Pls reply me sir🙏🙏

  • @biggy7211
    @biggy7211 7 місяців тому

    Doremon theme song in the background , so gooooooooood

  • @RishiRaj-xj2zb
    @RishiRaj-xj2zb 3 роки тому

    I came here to understand a mug up 1step. But here he says to mug 10 steps ahh shit😂

  • @Balramsingh777yt
    @Balramsingh777yt 3 роки тому

    What is your language sir but teaching mathod is very nice

  • @7fentertainments364
    @7fentertainments364 3 роки тому

    Sir can you solve d/dx(e^x sinx) ?

  • @sanch3608
    @sanch3608 Рік тому

    Why can you bring the sin of x and the cosine of x out?

  • @MrRyanroberson1
    @MrRyanroberson1 6 років тому +1

    I wonder, what the full derivative of sin(a+b) is, since the full derivative of a multivariable function is more than just the successive partial derivatives? Mainly since layering the partials would simply give -sin(a+b)

  • @nurafiahfifih984
    @nurafiahfifih984 5 років тому

    how to prove derivative of f(x) = (u(x))^n?

  • @Galishragasa
    @Galishragasa 19 днів тому

    I ask let y=coshx,show that dy/dx=sinhx.

  • @MrFeatre
    @MrFeatre 3 роки тому

    sin and cos are like homies : )

  • @samraurooj3414
    @samraurooj3414 4 роки тому

    👍🏻👍🏻

  • @rupak6346
    @rupak6346 6 років тому +2

    i have a problem
    can you solve for me?
    solve for x
    x+[x]=1

    • @Buenofresser
      @Buenofresser 6 років тому

      RUPAK BISWAS I think x€IR_

    • @rupak6346
      @rupak6346 6 років тому

      if x=0.5
      [x]=0
      than x+[x]=0.5

    • @呂永志-x7o
      @呂永志-x7o 6 років тому +2

      You can solve it by graph; it's no solution.

    • @rupak6346
      @rupak6346 6 років тому

      Thank

    • @Ben-wv7ht
      @Ben-wv7ht 6 років тому

      x+|x|=1 x+x=1 if x>0 and x-x=1 if x0 and 0=1 if x

  • @flowerwithamachinegun2692
    @flowerwithamachinegun2692 6 років тому +1

    Where are my homies?!!!

  • @stonale3669
    @stonale3669 9 місяців тому

    Why was Doraemon theme playing on the background

  • @Chris_Gabriel
    @Chris_Gabriel 3 роки тому

    sinhcosx on the third line dont get it wrong guys

  • @SteveGuidi
    @SteveGuidi 6 років тому +1

    Deja-vu: ua-cam.com/video/VMNX2xGffzU/v-deo.html

  • @alejorabirog1679
    @alejorabirog1679 5 років тому +1

    Dude, but you did not proove the limits :(

    • @blackpenredpen
      @blackpenredpen  5 років тому +2

      It’s in another video. Search “the limit”

  • @ClashingLego
    @ClashingLego 6 років тому +1

    Homies......LOL

  • @oscartroncoso2585
    @oscartroncoso2585 6 років тому +3

    First!

  • @lenamuszynska8693
    @lenamuszynska8693 9 місяців тому

    baby help me

  • @luisalburez2508
    @luisalburez2508 6 років тому +1

    :v

  • @Luka_c123
    @Luka_c123 Рік тому

    you saved me 5 marks sin my alevel thanks