[[我有M1/M2數要問]] HKDSE M2 Q20241201|| Mathematical Induction|| Summation to infinity|| HKDSE M2

Поділитися
Вставка
  • Опубліковано 19 гру 2024
  • [[我有M1/M2數要問]] HKDSE M2 Q20241201|| Mathematical Induction|| Summation to infinity|| HKDSE M2
    Facebook account & link :
    Dr.K.Liu Maths-Erudition Education 博學習坊
    / eruditioneducation
    Instagram account & link :
    drkliu_math

КОМЕНТАРІ •

  • @DrKLiuMaths
    @DrKLiuMaths  17 днів тому +5

    歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!

  • @noobnoob8782
    @noobnoob8782 14 днів тому +1

    thanks for the help

  • @expl0s10n
    @expl0s10n 17 днів тому +3

    I think this is out of scope in dse, as dse m2 do not require limit of sequences

  • @kwokhunghui7521
    @kwokhunghui7521 12 днів тому +1

    Dr Liu, the email I attached a text in which you can find the whole question has sent to you. Thank you!

  • @kwokhunghui7521
    @kwokhunghui7521 12 днів тому +1

    sorry Dr liu, i lost your email, please help send to me again to send you the whole question

  • @kwokhunghui7521
    @kwokhunghui7521 17 днів тому +2

    可否幫忙。reduction formula for integration from 0 to pi, of cos^2 nx/cos^x😢😢

    • @kwokhunghui7521
      @kwokhunghui7521 17 днів тому +1

      sorry,typo, cos^2 nx/cos^ 2 x

    • @DrKLiuMaths
      @DrKLiuMaths  17 днів тому +1

      I(n) = inte (cos(nx))^2 / (cosx)^2 ??

    • @kwokhunghui7521
      @kwokhunghui7521 13 днів тому +1

      @DrKLiuMaths Yes, the reduction formula and for all odd values of n, limits are 0 to pi, Cambridge exam question. I can obtain (cosnx)/cosx

    • @DrKLiuMaths
      @DrKLiuMaths  13 днів тому +1

      here is my email, can you send me the whole question, let me see see first.
      drkliumaths@gmail.com

    • @DrKLiuMaths
      @DrKLiuMaths  12 днів тому +1

      By using I(n) = inte (cos(nx))^2 / (cosx)^2, i obtain an very complicated formula.
      I will post them step by step in my channel