- 259
- 36 562
Dr K Liu Maths (ENG)
Приєднався 17 тра 2024
[[我有M1/M2數要問]] HKDSE M2 Q20241217|| q2|| Compound Angle Formula|| HKDSE M2
[[我有M1/M2數要問]] HKDSE M2 Q20241217|| q2|| Compound Angle Formula|| HKDSE M2
Facebook account & link :
Dr.K.Liu Maths-Erudition Education 博學習坊
/ eruditioneducation
Instagram account & link :
drkliu_math
Facebook account & link :
Dr.K.Liu Maths-Erudition Education 博學習坊
/ eruditioneducation
Instagram account & link :
drkliu_math
Переглядів: 23
Відео
[[我有M1/M2數要問]] HKDSE M2 Q20241217|| Integration|| Substitution|| HKDSE M2
Переглядів 542 години тому
[[我有M1/M2數要問]] HKDSE M2 Q20241217|| Integration|| Substitution|| HKDSE M2 Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有數要問]] HKDSE Maths Students Q20241216|| Completing the square|| Vertex|| HKDSE Maths
Переглядів 354 години тому
[[我有數要問]] HKDSE Maths Students Q20241216|| Completing the square|| Vertex|| HKDSE Maths Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有數要問]] HKDSE Maths Students Q20241215|| q1|| Probability|| Tree Diagram|| HKDSE Maths
Переглядів 237 годин тому
[[我有數要問]] HKDSE Maths Students Q20241215|| q1|| Probability|| Tree Diagram|| HKDSE Maths Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有數要問]] HKDSE Maths Students Q20241208|| q6|| Circle Properties|| HKDSE Maths
Переглядів 559 годин тому
[[我有數要問]] HKDSE Maths Students Q20241208|| q6|| Circle Properties|| HKDSE Maths Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有數要問]] HKDSE Maths Students Q20241208|| q4|| Circle Properties|| HKDSE Maths
Переглядів 17614 годин тому
[[我有數要問]] HKDSE Maths Students Q20241208|| q4|| Circle Properties|| HKDSE Maths Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有M1/M2數要問]] HKDSE M2 Q20241203|| ODE|| Differential Equations
Переглядів 34316 годин тому
[[我有M1/M2數要問]] HKDSE M2 Q20241203|| ODE|| Differential Equations Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[Year One 問數]]Advance Maths Q20241209|| q1|| Limit|| L'Hospital's Rule
Переглядів 7319 годин тому
[[Year One 問數]]Advance Maths Q20241209|| q1|| Limit|| L'Hospital's Rule Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有M1/M2數要問]] HKDSE M2 Q20241205|| q1|| Combination|| Permutation|| HKDSE M1/ Maths Core
Переглядів 9721 годину тому
[[我有M1/M2數要問]] HKDSE M2 Q20241205|| q1|| Combination|| Permutation|| HKDSE M1/ Maths Core Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[Year One 問數]]Advance Maths Q20241208|| MATH1520A(2024)|| q9|| Limit|| L'Hospital's Rule|| MVT
Переглядів 1,2 тис.День тому
[[Year One 問數]]Advance Maths Q20241208|| MATH1520A(2024)|| q9|| Limit|| L'Hospital's Rule|| MVT|| HKAL Pure Maths Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[Year One 問數]]Advance Maths Q20241202|| MATH1520(2024)|| q8|| Differentiation|| Inequality
Переглядів 185День тому
[[Year One 問數]]Advance Maths Q20241202|| MATH1520(2024)|| q8|| Differentiation|| Inequality Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有M1/M2數要問]] HKDSE M2 Q20241127|| q2|| Integration|| Rotational Volume|| Shell Method|| HKDSE M2
Переглядів 494День тому
[[我有M1/M2數要問]] HKDSE M2 Q20241127|| q2|| Integration|| Rotational Volume|| Shell Method|| HKDSE M2 Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[Year One 問數]]Advance Maths Q20241202|| MATH1520(2024)|| q5|| Rate of Change||Differential Equation
Переглядів 17614 днів тому
[[Year One 問數]]Advance Maths Q20241202|| MATH1520(2024)|| q5|| Rate of Change||Differential Equation Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[Year One 問數]]Advance Maths Q20241202|| MATH1520(2024)|| q6|| Rate of Change|| HKDSE M1 M2
Переглядів 26714 днів тому
[[Year One 問數]]Advance Maths Q20241202|| MATH1520(2024)|| q6|| Rate of Change|| HKDSE M1 M2 Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[Year One 問數]]Advance Maths Q20241121|| q25|| Reduction Formula|| HKDSE M2|| HKAL Pure Maths
Переглядів 31214 днів тому
[[Year One 問數]]Advance Maths Q20241121|| q25|| Reduction Formula|| HKDSE M2|| HKAL Pure Maths Facebook account & link : Dr.K.Liu Maths-Erudition Education 博學習坊 / eruditioneducation Instagram account & link : drkliu_math
[[我有M1/M2數要問]] HKDSE M2 Q20241201|| Mathematical Induction|| Summation to infinity|| HKDSE M2
Переглядів 52214 днів тому
[[我有M1/M2數要問]] HKDSE M2 Q20241201|| Mathematical Induction|| Summation to infinity|| HKDSE M2
[[Year One 問數]]Advance Maths Q20241126|| q2|| Taylor Series|| Maclaurin Series
Переглядів 11814 днів тому
[[Year One 問數]]Advance Maths Q20241126|| q2|| Taylor Series|| Maclaurin Series
[[Year One 問數]]Advance Maths Q20241129|| q2|| Integration|| arc cos|| HKDSE M2
Переглядів 16914 днів тому
[[Year One 問數]]Advance Maths Q20241129|| q2|| Integration|| arc cos|| HKDSE M2
[[Year One 問數]]Advance Maths Q20241127|| q2|| Definite Integration|| Absolute sign|| HKDSE M1, M2
Переглядів 31114 днів тому
[[Year One 問數]]Advance Maths Q20241127|| q2|| Definite Integration|| Absolute sign|| HKDSE M1, M2
[[Year One 問數]]Advance Maths Q20241120|| MATH1510J(2021)|| q28(重錄)|| Integration|| MVT
Переглядів 27821 день тому
[[Year One 問數]]Advance Maths Q20241120|| MATH1510J(2021)|| q28(重錄)|| Integration|| MVT
[[Year One 問數]]Advance Maths Q20241127|| q1|| Definite Integration|| Improper Integration|| HKDSE M2
Переглядів 46221 день тому
[[Year One 問數]]Advance Maths Q20241127|| q1|| Definite Integration|| Improper Integration|| HKDSE M2
[[Year One 問數]]Advance Maths Q20241126|| q1|| Taylor Series|| Maclaurin Series
Переглядів 8221 день тому
[[Year One 問數]]Advance Maths Q20241126|| q1|| Taylor Series|| Maclaurin Series
[[Year One 問數]]Advance Maths Q20241122|| q2|| Integration|| By-Part|| HKDSE M2|| HKAL Pure
Переглядів 27221 день тому
[[Year One 問數]]Advance Maths Q20241122|| q2|| Integration|| By-Part|| HKDSE M2|| HKAL Pure
[[Year One 問數]]Advance Maths Q20241122|| q4|| Integration|| MVT|| Differentiation||| HKAL Pure
Переглядів 18221 день тому
[[Year One 問數]]Advance Maths Q20241122|| q4|| Integration|| MVT|| Differentiation||| HKAL Pure
[[Year One 問數]]Advance Maths Q20241122|| q1|| Integration|| Partial Fraction|| HKDSE M2|| HKAL Pure
Переглядів 71121 день тому
[[Year One 問數]]Advance Maths Q20241122|| q1|| Integration|| Partial Fraction|| HKDSE M2|| HKAL Pure
[[我有M1/M2數要問]] HKDSE M2 Q20241119|| q1|| First Principle|| Differentiation|| Tangent|| HKDSE M2
Переглядів 25921 день тому
[[我有M1/M2數要問]] HKDSE M2 Q20241119|| q1|| First Principle|| Differentiation|| Tangent|| HKDSE M2
[[我有數要問]] HKDSE Maths Students Q20241120|| q1|| Sine Law|| Cosine Law|| HKDSE Maths
Переглядів 12328 днів тому
[[我有數要問]] HKDSE Maths Students Q20241120|| q1|| Sine Law|| Cosine Law|| HKDSE Maths
[[我有M1/M2數要問]] HKDSE M2 Q20241119|| q2(a)|| Integration|| Trigonometry Substitution|| HKDSE M2
Переглядів 33928 днів тому
[[我有M1/M2數要問]] HKDSE M2 Q20241119|| q2(a)|| Integration|| Trigonometry Substitution|| HKDSE M2
[[我有M1/M2數要問]] HKDSE M2 Q20241112|| q8|| Rate of Change|| Differentiation|| HKDSE M2
Переглядів 153Місяць тому
[[我有M1/M2數要問]] HKDSE M2 Q20241112|| q8|| Rate of Change|| Differentiation|| HKDSE M2
[[Year One 問數]]Advance Maths Q20241114|| q3|| Integration|| Partial Fraction|| HKDSE M2|| HKAL Pure
Переглядів 267Місяць тому
[[Year One 問數]]Advance Maths Q20241114|| q3|| Integration|| Partial Fraction|| HKDSE M2|| HKAL Pure
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
呢個係core 定m1/2? 我記得core 都有
mainly in M1, but many school will teach in core too
I did it the exact same way as you did ❤
good!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
其實真係只有根據個答案倒轉嚟做先work. 難就不太難但感覺唔係"真數學"😢😢😢
講中文ok 嗎
go to my Chinese channel
Actually after the first application of lhopital in part b you can kill off the 2nd limit by considering sin(sinx)/2x = (sin(sinx)/sinx)(sinx/x)(1/2) to avoid the 2nd application of the lhopital rule. Also in part a I think it is easier to apply the estimation lemma on abs(the integral) and show that it's 0 by bounding it by abs(x(1-x)) for small enough x. Your method still works perfectly for both parts though.
👍
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
(a) ln(1+x)= x-x^2+x^3-x^4+… not 1-x+x^2-x^3+…
Dr Liu, the email I attached a text in which you can find the whole question has sent to you. Thank you!
Got it!
sorry Dr liu, i lost your email, please help send to me again to send you the whole question
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
thanks for the help
No problem!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
可否幫忙。reduction formula for integration from 0 to pi, of cos^2 nx/cos^x😢😢
sorry,typo, cos^2 nx/cos^ 2 x
I(n) = inte (cos(nx))^2 / (cosx)^2 ??
@DrKLiuMaths Yes, the reduction formula and for all odd values of n, limits are 0 to pi, Cambridge exam question. I can obtain (cosnx)/cosx
here is my email, can you send me the whole question, let me see see first. drkliumaths@gmail.com
By using I(n) = inte (cos(nx))^2 / (cosx)^2, i obtain an very complicated formula. I will post them step by step in my channel
Hi! Here's an alternative to this problem, which is also workable although it is slower: Still integration by parts, but I will not do it directly from the start. Let u = arccos x, cos u = x So dx/du = - sin u, and dx = - sin u du The integrand then becomes -u² sin u and after performing by parts and undoing the substitution, the answer will be the same
thx john
I think this is out of scope in dse, as dse m2 do not require limit of sequences
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
I liked that first integral. A nice problem.
🥰
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
Hi! Nice solutions on both questions, but I've come up with some alternatives to them! For Question 1: Alternative method 1: If a student doesn't have those formulae (printed on the M2 exam paper) in hand and forgets this trick and those formulae, this alternative can help them solve an integral of a product of any powers of sin x and cos x, although it is obviously slower: All we need to memorize is e^ix = cos x + i sin x Change x to "-x" yields e^(-ix) = cos x - i sin x Adding the 2 formulae above yields cos x = [e^ix + e^(-ix)]/2 Subtracting the 2 formulae yields sin x = [e^ix - e^(-ix)]/(2i) So sin⁵x cos²x will become: {[e^ix - e^(-ix)]/(2i)}⁵ • {[e^ix + e^(-ix)]/2}² = 1/(2⁷i) • [e^(5ix) - 5e^(3ix) + 10e^ix - 10e^(-ix) + 5e^(-3ix) - e^(-5ix)][e^(2ix) + e^(-2ix) + 2] (By binomial expansion) = 1/(2⁷i) • [e^(5ix) - e^(-5ix) - 5(e^(3ix) - e^(-3ix)) + 10(e^ix - e^(-ix))][e^(2ix) + e^(-2ix) + 2] = 1/(2⁷i) • {2[e^(5ix) - e^(-5ix) - 5(e^(3ix) - e^(-3ix)) + 10(e^ix - e^(-ix))] + e^(7ix) - e^(-3ix) - 5(e^(5ix) - e^(-ix)) + 10(e^(3ix) - e^ix) + e^(3ix) - e^(-7ix) - 5(e^ix - e^(-5ix)) + 10(e^(-ix) - e^(-3ix))} = 1/(2⁷i) • {e^(7ix) - e^(-7ix) + 2[e^(5ix) - e^(-5ix)] - 10[e^(3ix) - e^(-3ix)] + 20[e^ix - e^(-ix)] + e^(3ix) - e^(-3ix) - 5[e^(5ix) - e^(-ix) + e^ix - e^(-5ix)] + 10[e^(3ix) - e^ix + e^(-ix) - e^(-3ix)]} = 1/2⁶ • [sin 7x + 2sin 5x - 10sin 3x + 20sin x + sin 3x - 5(sin 5x + sin x) + 10(sin 3x - sin x)] (Using sin x = [e^ix - e^(-ix)]/(2i)) = 1/2⁶ • (sin 7x - 3sin 5x + sin 3x + 5sin x) So, the integral will become: 1/2⁶ • (-1/7 • cos 7x + 3/5 • cos 5x - 1/3 • cos 3x - 5cos x) + C = -1/448 • cos 7x + 3/320 • cos 5x - 1/192 • cos 3x - 5/64 • cos x + C
Alternative method 2 (very similar to method 1): The compound angle formulae can be derived from e^ix = cos x + i sin x: As we want the product of sin x and cos x, we can square both sides of this formula to get: e^(2ix) = cos²x - sin²x + (2sin x cos x)i cos 2x + i sin 2x = cos²x - sin²x + (2sin x cos x)i And we get sin 2x = 2sin x cos x and cos 2x = cos²x - sin²x So sin⁵x cos²x will become: 1/4 • sin²2x • sin³x = 1/4 • [(e^(2ix) - e^(-2ix))/(2i)]² • [(e^(ix) - e^(-ix))/(2i)]³ = 1/(2⁷i) • [e^(4ix) + e^(-4ix) - 2] • [e^(3ix) - 3e^ix + 3e^(-ix) - e^(-3ix)] = ... = 1/2⁶ • (sin 7x - 3sin 5x + sin 3x + 5sin x) And the you will get the same answer for the integral 😁
thx John
For Q2, u can directly perform partial fraction on the integrand: 1/(8x² + 1)² = ⅛ • 1/(x² + ⅛)² = ⅛ • 1/[(x - i/(2√2))²(x + i/(2√2))²] = ⅛ • [A/(x - i/(2√2)) + B/(x + i/(2√2)) + C/(x - i/(2√2))² + D/(x + i/(2√2))²] By cover-up method, A = 1/(i/(2√2) + i/(2√2))² = -2 B = 1/(- i/(2√2) - i/(2√2))² = 2 Therefore, 1/(x² + ⅛)² = -2/(x - i/(2√2)) + 2/(x + i/(2√2)) + C/(x - i/(2√2))² + D/(x + i/(2√2))² -> 1 = -2(x - i/(2√2))(x + i/(2√2))² + 2(x - i/(2√2))²(x + i/(2√2)) + C(x + i/(2√2))² + D(x - i/(2√2))² -> 1 = -2(x² + ⅛)(x + i/(2√2)) + 2(x² + ⅛)(x - i/(2√2)) + C(x² + i/(2√2) • x - ⅛) + D(x² - i/(2√2) • x - ⅛) -> 1 = - √(2)i (x² + ⅛) + (C + D)x² + (C - D) • i/(2√2) • x - ⅛ • (C + D) -> 1 = (C + D + √(2) i) x² + (C - D) • i/(2√2) • x - (√(2)i/8 + C + D) Coefficient of x = 0 -> C - D = 0 -> C = D Constant: 1 = -(√(2)i/8 + 2C) C = -(1 + √(2)i/8)/2 = -(8 + √(2)i)/16 D = C = -(8 + √(2)i)/16 After integrating, answer = -2 ln|x - i/(2√2)| + 2 ln|x + i/(2√2)| + (8 + √(2)i)/16 • [1/(x - i/(2√2)) + 1/(x + i/(2√2))] = 2 ln|(x + i/(2√2))/(x - i/(2√2))| + (8 + √(2)i)/16 • [2x/(x² + ⅛)] = ... And then you will get the same answer
thx
thx
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!
stirling
歡迎各位同學, 老師, 家長發表有意義的意見, 多多討論!!!