System of ODEs with a repeated eigenvalue

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 31

  • @umarpatel3517
    @umarpatel3517 4 роки тому +16

    I attend Stanford University and this is way better than how my TA explains it. Well done sir!

    • @Verticaltex
      @Verticaltex Рік тому

      What year does Stanford typically have students learning this level of mathematics? I assume sophomore year?

  • @terrorbyte5825
    @terrorbyte5825 4 роки тому +6

    Just saved me from hours of confusion doing my hw. Thank you very much sir!

  • @ugotmail5651
    @ugotmail5651 5 років тому +2

    Thank you very much. You cleared my confusion.

  • @thomaswierikx7401
    @thomaswierikx7401 8 років тому +1

    Very clear and useful!

  • @mardi8685
    @mardi8685 3 роки тому

    Hello, can someone explain me what is he is doing at 10:30 with this "double matrix" thank you

    • @ericcytrynbaum
      @ericcytrynbaum  3 роки тому

      This is an augmented matrix. It’s a shorthand way of writing a system of equations that has non zeros on the right side in matrix form. You ought to have covered this in a linear algebra course before taking an ODE course but if not just write down the two equations and solve them simultaneously.

  • @MrBlash93
    @MrBlash93 8 років тому +3

    Thank you so much sir. You helped me a lot.

  • @miteshkumar3183
    @miteshkumar3183 6 років тому +9

    THANKS SO MUCH VERY HELPFUL MY PROF DOESNT TEACH

  • @Vollendung5716
    @Vollendung5716 Рік тому

    save my life before exam,thank you

  • @lancesather6690
    @lancesather6690 4 роки тому

    How do you calculate the wronskian in this kind of problem?

  • @Mahlodi_Makobe
    @Mahlodi_Makobe 2 роки тому

    appreciate this video so so much

  • @teresarodriguez9902
    @teresarodriguez9902 8 років тому +2

    Thanks for the video, it makes much more sense to me now! :)

  • @makeiteasy1455
    @makeiteasy1455 3 роки тому +1

    How you take the Value of (A-2I)={1 1 ;0 0}

  • @tenton2000k
    @tenton2000k 7 років тому

    Can you explain 9:03 in another way. I have no idea how you got v = (1 -1)

    • @monirdavinci4638
      @monirdavinci4638 6 років тому

      same

    • @ericcytrynbaum
      @ericcytrynbaum  5 років тому

      Maybe coming a bit late for you but, for others with the same question, I find the eigenvalues at 1:50 - 3:10.

  • @mollypete4270
    @mollypete4270 5 років тому +1

    Shouldn't v = [-1,1] ?

    • @ericcytrynbaum
      @ericcytrynbaum  5 років тому

      Eigenvectors aren't unique. In fact, you can always multiply an eigenvector by a constant and it will still be an eigenvector. So you're correct.

  • @TheTalmon18
    @TheTalmon18 7 років тому +1

    Do you mean if you had a 2nd eigenvector (so the matrix isnt defective)
    It'd be x(t) = c1e^2t * v1 + c2e^2t * v2 for the general solution? (v1,v2 are the 2 eigenvectors if it wasnt defective)
    Or do we:
    c1e^2t * v1 + tc2*e^2t * v2 (Multiply a t in front of 2nd term)?

    • @ericcytrynbaum
      @ericcytrynbaum  7 років тому +1

      Yes, if the matrix had been such that there were two eigenvectors for lambda=2 then the solution would be the first x(t) that you wrote.

    • @TheTalmon18
      @TheTalmon18 7 років тому

      Awesome thanks!
      I'm in a discrete course and we're working with recurrence relations and I had a 3x3 that wasn't defective but had one eigenvalue with a repeat root so I assume it's the same as the ODE case

    • @TheTalmon18
      @TheTalmon18 7 років тому

      I just noticed you have some PDE videos too...
      Time to check those out! :D

  • @suryavarman8898
    @suryavarman8898 3 роки тому

    thank you so much

  • @kristinperez6617
    @kristinperez6617 6 років тому

    Thank you!!

  • @tfl_supers5362
    @tfl_supers5362 2 роки тому +1

    Mate I’m in oxford and my lectures on this are shit

  • @bobymondal16
    @bobymondal16 5 років тому

    Thanks sir

  • @haibinglin4428
    @haibinglin4428 7 років тому

    Thanks!

  • @jaromatt3747
    @jaromatt3747 4 роки тому

    God

  • @HL-iw1du
    @HL-iw1du 4 роки тому +1

    Bro get some water.