A Nice Exponential Equation | Problem 442

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ •

  • @FisicTrapella
    @FisicTrapella 5 днів тому +10

    5:52 => It should be (8n+4) in the denominator

  • @scottleung9587
    @scottleung9587 4 дні тому

    Cool!

  • @mcwulf25
    @mcwulf25 4 дні тому +1

    8n+4 in the denominator.
    And in #2 you still need the 2n.pi to get all the solutions.

  • @Don-Ensley
    @Don-Ensley 4 дні тому

    problem
    (-1) ⁽ ᶻ⁺ⁱ ⁾ = ( 1 + i )
    Take natural logarithms on both sides. Bring down exponents.
    ( z + i ) ln (-1) = ln (1 + i )
    For the polar form of -1, use the angle π ( 1 + 2 N) where N is an integer. The modulus is 1.
    -1 = e ⷫ ⁱ ⁽¹⁺²ᴺ⁾
    For the polar form of 1 + i use angle π (1/4+2K) = π (8K +1) / 4 and modulus √2.
    1 + i = √2 e ⷫ ⁱ ⁽⁸ᴷ⁺¹⁾ᐟ⁴
    Replacing and taking the logarithms gives us
    (z + i) i π (2Ν + 1) = ln√2 + i π (8K + 1)/4
    (z + i) i = [ ln√2 + i π (8K + 1)/4 ]/ [π(2N+1)]
    z + i = [ π (8K + 1)/4 - i ln√2 ]/ [π(2N+1)]
    z = [ π ( 8K + 1 )/4 - i (ln√2 +1) ]/ [π(2N+1)]
    z = ( 8K + 1 ) / ( 8N + 4) - i (ln 2 +2) / [π(4N+2)]
    , where (N, K ∈ ℤ )
    answer
    z = ( 8K + 1 ) / ( 8N + 4) - i
    (ln 2 +2) / [π (4N+2)]
    , (N, K ∈ ℤ )

  • @Horaxony
    @Horaxony 4 дні тому

    How about a problem including the residue theorem? 🤔

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 4 дні тому

    z=-i*ln2/(4k+2)π-i+(8n+1)/(8k+4) is the solution i found but seems a bit off?