Essential and Fundamental Matrices

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 23

  • @gabrielgozal007
    @gabrielgozal007 2 роки тому

    Good Explanation Thank you. Notice that at 7:00 the direction of the normal should be turned by pi (or 180 degrees). x=1, y=-1

  • @arhamnoman
    @arhamnoman 4 роки тому +2

    Your video really helped me out with my computer vision course. Thanks a lot!

    • @Foo-i1v
      @Foo-i1v  4 роки тому +2

      I'm really glad to hear that, I'm recording new high quality video series, make sure to subscribe ;)

  • @khizarmohammed7666
    @khizarmohammed7666 2 роки тому

    Great video. Easy to understand

  • @thedanebear
    @thedanebear 5 років тому

    In rasterization there are matrix operations:
    1. Model Transform - move an object's geometry to worldspace.
    2. View Transform - move the world relative to the viewer. Known as eyespace or viewspace.
    3. Projection Transform - prepare scene geometry for a perspective divide (perspective projection) or otherwise (orthographic projection). This also does some skewing according to a screen's aspect ratio. This transform moves geometry to what is called "clip space."
    4. Viewport transform. Moves geometry from clips space to screen pixel coordinates.
    I can understand why the model transform isn't in your Fundamental matrix summary ~12:00 but why is there no projection matrix calculated? I see you have a view matrix and the viewport transform (intrinsic matrix?). Can you help me out with this?

    • @Foo-i1v
      @Foo-i1v  5 років тому

      Hi Dane, please watch my other vidoes, maybe you can get your answer: ua-cam.com/video/oFZQykvEw14/v-deo.html
      ua-cam.com/video/hxbQ-F8u08U/v-deo.html&

  • @kiges
    @kiges Рік тому

    How are the collinearity or SfM equations when using turntable and fixed camera? Is there a resource that explains the equations for the fixed camera and the rotating object?

  • @taojiang2735
    @taojiang2735 5 років тому +1

    great work , I like your videos very much. thanks again

  • @panayiotispanayiotou1469
    @panayiotispanayiotou1469 5 років тому

    16:22 in P_img = K * P_c there is a dimensionality mismatch. K is 3x3 and P_c is 4x1

    • @Foo-i1v
      @Foo-i1v  5 років тому

      k is the projection matrix and it is 3x4

    • @panayiotispanayiotou1469
      @panayiotispanayiotou1469 5 років тому +2

      @@Foo-i1v Thanks for the response. As far as I can tell, K is the intrinsic camera matrix and is 3x3.
      K = [fx skew x_origin
      0 fy y_origin
      0 0 1]
      Is this not what K is?

    • @trunc8
      @trunc8 3 роки тому

      @@panayiotispanayiotou1469 To convert K to (3x4), K is post-multiplied by [I(3x3) 0(3x1)]

  • @alexanderdishes5384
    @alexanderdishes5384 6 років тому +3

    Thanks for the clear video! One question, are you missing a transpose symbol for the first K^-1 on the second to last line of the Fundamental matrix derivation?

    • @Foo-i1v
      @Foo-i1v  6 років тому

      you are right, at 17:22 it should be (K_left^-1)T

  • @yousofebneddin7430
    @yousofebneddin7430 3 роки тому

    At 15:38 you are using inverse of K matrix. I though K matrix is not square. Because it is reducing one dimension. K is 3x4. Inverse of non-square matrix does not exist. Where am I wrong?

    • @Foo-i1v
      @Foo-i1v  3 роки тому

      HI, this is my code, it might help ros-developer.com/2019/01/01/computing-essential-and-fundamental-matrix-using-opencv-8-points-algorithm-with-c/

    • @yousofebneddin7430
      @yousofebneddin7430 3 роки тому

      @@Foo-i1v Thanks, I will have a look.

    • @Foo-i1v
      @Foo-i1v  3 роки тому

      @@yousofebneddin7430 haven't worked on this topic for a while, honestly I have forgotten the details, needs to review it again to refresh my memory,

  • @omrizentner5073
    @omrizentner5073 5 років тому

    XL and XR are vectors? how do you rotate and translate a vector? 10:08

    • @Foo-i1v
      @Foo-i1v  5 років тому

      R (Rotation Matrix) is 3x3, so R*XL is 3x1 and you can just simply add T to that,

  • @mariamgarba1416
    @mariamgarba1416 5 років тому

    Thanksss and why did you change XL on the right at side to XL^T at 11:38 ?

    • @Foo-i1v
      @Foo-i1v  5 років тому

      You can write any dot product in a matrix form, the reason we do that is that we want to put everything in a big matrix, mathinsight.org/dot_product_matrix_notation

  • @roshneekishore9183
    @roshneekishore9183 6 років тому

    at 20.00 why do we divide all the values by f33? why is that considered for scaling other values? And also while finding the new F (F hat) from the F with rank 2 why do we set the t value in the diagonal matrix (D) of F to 0? Is it just to impose a constraint to change the values to a minimal extent in order to get 3 independent column vectors to make the new F a matrix of rank 3?