Algebra 59 - A Geometric View of Gauss-Jordan with Dependent Systems

Поділитися
Вставка
  • Опубліковано 22 гру 2024

КОМЕНТАРІ • 7

  • @adolfocarrillo248
    @adolfocarrillo248 3 роки тому +3

    This is deeper than it seems, here in this series are the fundaments to comprehend the linear algebra purpose. Thanks for sharing your knowledge Mr. Steve Goldman and Mr.Mark Rodriguez.

    • @MAM-pd9mx
      @MAM-pd9mx 3 роки тому

      Indeed mi pana. Uno suele hacer el Michael Jackson (referencia a Michael Jordan Gauss Jordan) solo algebraicamente, pero el significado geometrico da una perspectiva muchisimo mas amplia, y refuerza el entendimiento algebraico.

  • @atsul.7943
    @atsul.7943 7 років тому +3

    Never thought an animated professor could be this way cooler than a real world professor. Great job professor ...hawk and your team.

  • @cherylavila1195
    @cherylavila1195 7 років тому +2

    Math teachers, have you ever wanted to be able to explain solving systems graphically for your visual learners? I suggest you check out this whole series of WhyU videos. The graphics may help to inspire some of those "light bulb" moments in your classroom.

  • @MAM-pd9mx
    @MAM-pd9mx 3 роки тому

    I only got confused in the beginning, aren't both systems dependent? (because their solution is a line in both cases?)

    • @MyWhyU
      @MyWhyU  3 роки тому +1

      A system of equations is dependent when one or more of the equations don't add additional information about the solution set. In the case of three planes that all intersect in a common line, any one of the equations can be eliminated without changing the solution set since the remaining two planes still intersect along the same line.

    • @MAM-pd9mx
      @MAM-pd9mx 3 роки тому

      @@MyWhyU thanks for the explanation