Germany | Olympiad Mathematics | The complete solution 💯

Поділитися
Вставка
  • Опубліковано 3 лют 2025

КОМЕНТАРІ • 41

  • @e.a.lehner3869
    @e.a.lehner3869 2 дні тому +2

    substitute: y=x-2; a complex y to the power of 4 shall be 16; r=16^(1/4)=2; theta= 0 or π/2 or -π/2 or -π; all 4 thetas lead to 0 if multiplied by 4 (rotated 4 times by theta); to get x shift 4 ys in the complex plane

  • @семенпавлодский
    @семенпавлодский 4 години тому

    I' vê just red some comments, agreed. Clear at very first sight on equation. Zero and minus 4. Two solutions is right for this particular equation.....

  • @AlexanderSemashkevich
    @AlexanderSemashkevich 2 дні тому +2

    x=2×cos(n×pi/2)-2+2i×sin(n×pi/2), n=1, 2, 3, 4
    So roots are -4, 0, -2±2i

  • @vizchelur
    @vizchelur 6 годин тому

    [(X+2)^4]^1/2 = (16)^1/2
    (X+2)^2 = = 4
    [(X+2)^2]^1/2 = 4^1/2
    X+2 = 2
    X = 2-2
    X=0

  • @robertzara5512
    @robertzara5512 3 години тому

    0 and -4

  • @nfpnone8248
    @nfpnone8248 День тому

    By inspection 2^4 = 16, therefore x = 0, any other roots aren’t worth the time considering, although x = - 4 works too.

    • @davidseed2939
      @davidseed2939 День тому

      solutiom.
      ((x+2)/2)^4=1
      note 1=e^2πni , n=0,1,2,3
      ((x+2)/2)=1^(1/4) =1,i,-1,-i
      x+2=2(1,-1,i,-i)
      x=-2+-2=0,-4
      x=-2+-2i
      4 solutions
      x= 0, -4, -2-2i, -2+2i

    • @nfpnone8248
      @nfpnone8248 День тому

      @
      Thank you, but I wasn’t asking for help with a solution which I could have done myself! My point was the total stupidity of the question.

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

    • @nfpnone8248
      @nfpnone8248 20 годин тому

      @
      Do you think you are teaching me something, I don’t care how many roots there are, there are only two that are of any interest, and I found them by inspection, enough said! If I needed the other roots. And I cannot imagine any reason for needing them, I could determine them by inspection too, but why bother!

  • @rodfulford4306
    @rodfulford4306 3 дні тому +1

    Dont need complex when there are simple.

  • @fellahmohamed3012
    @fellahmohamed3012 17 годин тому

    〈×+2)⁴=16=2⁴
    (x+2)⁴=2⁴
    x+2=2......x=0

  • @subratabiswas2502
    @subratabiswas2502 23 години тому

    Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

  • @mohamadpakzamir
    @mohamadpakzamir 3 дні тому +1

    (x+2)^2=+_4
    x+2=+_2. x=0. x=--4
    x+2=+_2 i
    x=--2+2 i. x= --2 --2i

  • @worldorthoorthopaedicsurge6147
    @worldorthoorthopaedicsurge6147 3 дні тому +2

    At 71 took me 5 seconds to solve, x is 0

    • @archfz
      @archfz 3 дні тому +1

      Absolute value 0; -4

    • @nigelcoles1979
      @nigelcoles1979 День тому

      Same here

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

  • @MARKKUS-cr4qo
    @MARKKUS-cr4qo День тому

    I saw the equation and thought : x=0 and x=-4 .

  • @sajanmp208
    @sajanmp208 3 години тому

    X=,0

  • @ИринаКомарова-у7ъ

    Х1=0 ; Х2=-4

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

  • @arafsahil8068
    @arafsahil8068 5 днів тому

    16=2power4 and x+2) power 4
    comparing x+2 and 2
    x+2 = 2 or x = 0
    very simple
    why all that exhaustion?

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      @ arafaahil8068 No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

  • @sergenjamkepo6467
    @sergenjamkepo6467 2 дні тому

    Too complicated solution !
    16 is equal to 2^4, then we have the difference of two square, and using the remarquable identities, we get two real solutions and two complex solutions. We have to remark that "x equal 0" is a solution.

  • @boeubanks7507
    @boeubanks7507 3 дні тому +2

    There should be four solutions to this. Only two will be real. And the narrator made this way too complex. You could have taken roots on both sides and wound up with (x+2)^2=+/- 4. Take a second root to get x+2= +/- (+/- 4)^1/2. The solutions are 0 and -4. These are your real roots. The imaginary roots will come in when you do the second root of the negative roots of the first square root. The second negative sign will give you your complex conjugate.

  • @worldorthoorthopaedicsurge6147
    @worldorthoorthopaedicsurge6147 3 дні тому +1

    X is 0

    • @archfz
      @archfz 3 дні тому

      Absolute value 0; -4

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

  • @rodfulford4306
    @rodfulford4306 3 дні тому

    X=0

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

  • @cachotrelles4715
    @cachotrelles4715 5 днів тому

    Y porqué no 2^4???

  • @worldwidenerds4033
    @worldwidenerds4033 6 днів тому +1

    You could have literally done this in 3 seconds. 16 is (+/-2)^4, meaning (x+2)=+/-2
    It's pretty simple

    • @schcl
      @schcl 5 днів тому +3

      You are missing the complex solutions

    • @zendr4
      @zendr4 3 дні тому

      @@schcl you could get complex directly ... apply sqroot and then (x+2)^2= +/-4, an then you have x^2+4x+8=0 and x^2+4x=0, this Indian boy spent 4 min to get to that

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.

  • @rafaelyorro4466
    @rafaelyorro4466 3 дні тому +1

    X=0

    • @subratabiswas2502
      @subratabiswas2502 23 години тому

      No. It is a 4th degree polynomial equation. So, x has four values. Let x+2 = y ; so, y^4-16=0 ; i,e (y^2+4)(y^2-4)= 0 ; i,e (y+2i)(y-2i)(y+2)(y-2)=0 ; so y= 2i or -2i or 2 or -2 ; i,e x=2i-2 or -2i-2 or 0 or -4.