A Radical Math Problem Solved with EASE!

Поділитися
Вставка
  • Опубліковано 23 лис 2024

КОМЕНТАРІ • 8

  • @RashmiRay-c1y
    @RashmiRay-c1y День тому +3

    Note that 1/2[47+21√5] = 1/4[94 + 2(7)(3√5)] = 1/4[7^2 +(3√5)^2 + 2(7)(3√5)] = [(7+3√5)/2]^2. Again, 1/2[7+3√5] = 1/4[14 +6√5] = 1/4[3^2+(√5)^2 + 2(3)(√5)]= [(3+√5)/2]^2. Further, 1/2(3+√5) = 1/4(6+2√5) = 1/4[(√5)^2 + 1^2 +2(√5)(1)] = [(√5+1)/2]^2. Thus, 1/4[94 + 2(7)(3√5)] = [ {((√5+1)/2)^2}^2]^2 = [(√5+1)/2]^8. So, E = 1/2(√5+1).

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs День тому +1

    Surd[((47+21Sqrt[5])/2),8]=0.5+0.5Sqrt[5]=(1+Sqrt[5])/2 It’s in my head.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    {x^8+x^8 ➖ }47x+47x ➖ +{21x+21x ➖ }+10={x^16+94x^2}+42x^2+10={94x^18+42x^2}+10={136x^18+10}=146x^18/2=73x^18 3^4^3x^2^9 1^2^2^3x^2^3^2 1^1^1^1x^2^3^1x2^3(x ➖ 3x+2).

  • @ManojkantSamal
    @ManojkantSamal 18 годин тому

    *= read as square root
    ^=read as to the power
    Ans =(1+*5)/2........May be
    As per question
    {47+(21.*5)/2}^(1/8)=?
    Let R^8={47+(21.*5)}/2
    Now explain
    {47+(21.*5)}/2
    Multiply 2, So
    {94+(42.*5)}/4
    ={7^2+(3.*5)^2+(2×7×3.*5)}/4
    =[{7+(3.*5)}/2]^2 eqn1
    Again explain
    {7 +(3.*5)}/2
    Multiply 2
    {14+(6.*5)}/4
    =3^2+(*5)^2+(2×3×*5)}/4
    ={3+*5}^2/2^2
    ={(3+*5)/2}^2.......eqn2
    Again explain (3+*5)/2
    Multiply 2
    {6+(2.*5)}/4
    ={1^2+(*5)^2+(2×1×*5)}/4
    =(1+*5)^2/2^2
    ={(1 *5)/2}^2...... Eqn3
    Compairing eqn1, eqn2 &eqn3 we shall get the following
    {(1+*5)/2}^8={47 +(21×*5)}/2
    So,
    R^8={(1+*5)/2}^8
    Hence R=(1+*5)/2

  • @潘博宇-k4l
    @潘博宇-k4l День тому

    E=[3+(5)^(1/2)]/2

  • @Shobhamaths
    @Shobhamaths День тому

    ((47+21√5) /2)^1/8
    ((94+42√5) /4) ^1/2) 1/4
    ((7+√45) /4) ^1/4
    ((14+2√45) /8) ^1/2) ^1/2)
    ((3+√5) /8) ^1/2
    ((6+2√5) /16) 1/2
    (√5+1) /2👍

  • @Fjfurufjdfjd
    @Fjfurufjdfjd День тому

    Εχω [47+21(5)^(1/2)]/2=2×[47+21(5)^(1/2)]/4=[94+42(5)^(1/2)]/4=[7^2+(3×5^(1/2) +2×21×(5)^(1/2)]/4=[7+3(5)^(1/2)]^2/4. Αρα Ε=[[7+3(5)^(1/2)]^2]/4=[[7+3(5)^(1/2)]/2]^(1/4) = [[14+6(5)^(1/2)]/4]^(1/4) = [9+(ριζα5)^2+6(ριζα5)]/4]^(1/4)=[[3+(5)^(1/2)]/2]^(1/2)=[[6+2(5)^(1/2)]2]^(1/2)=[[(5)^((1/2)+1]/2 δηλαδη πολλαπλασιαζω και διαιρω με το 2 καθε φορα. Ε=[(5)^(1/2)+1]/2