Induction Proof: x^n - y^n has x - y as a factor for all positive integers n

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 9

  • @mrheng562
    @mrheng562 3 роки тому +10

    The trickery of adding a zero in the middle so that you can factor. 😂😂😂

  • @szs5406
    @szs5406 3 роки тому +4

    Alternative proof: Use long division. x^n - y^n = (x - y) P(x, y), where P(x, y) = x^(n-1)+x^(n-2)y+...+xy^(n-2)+y^(n-1).

    • @Enthalpy--
      @Enthalpy-- 2 роки тому +2

      Easiest proof :-
      consider a polynomial p(x) = x^n - y^n
      p(y) = y^n - y^n = 0
      => y is zero of polynomial p(x)
      therefore (x-y) is a factor of p(x)
      hence (x-y) is a factor of (x^n - y^n)

    • @honourabledoctoredwinmoria3126
      @honourabledoctoredwinmoria3126 2 роки тому

      @@Enthalpy-- The issue is that it may not be (x - y) that is the factor for higher polynomials. It could be that the hypothetically unfactorable quadratic (x^2 - y^2) or a higher term is a multiple root that is the factor that leads to the zero when x^n is y^n.

    • @honourabledoctoredwinmoria3126
      @honourabledoctoredwinmoria3126 2 роки тому

      I realize it is trivial to prove this is not the case, or rather that if it was, then there is a contradiction because it could be proved that whatever hypothetical unfactorable multiple root must in fact be factorable , and thus I really like your easiest proof. But it's not quite so easy.

  • @nihaaltapasi8371
    @nihaaltapasi8371 2 роки тому +1

    To prove x-y as a factor just substitute x=y to the eq we get y^n-y^n =0

  • @samuelgaroma3207
    @samuelgaroma3207 Рік тому

    Genius 👍

  • @蔺美云
    @蔺美云 2 роки тому

    Awesome!