Can we just keep taking the natural logarithm?

Поділитися
Вставка
  • Опубліковано 1 лис 2024

КОМЕНТАРІ • 159

  • @blackpenredpen
    @blackpenredpen  3 місяці тому +12

    Can e^e^x=1?
    ua-cam.com/video/ckc9F0VjZ3k/v-deo.html

    • @keescanalfp5143
      @keescanalfp5143 3 місяці тому +1

      of course not, because
      e^x cannot be 0.
      you could approach zero as a limit, if you take
      x →-∞ .
      ?

    • @MichaelRothwell1
      @MichaelRothwell1 3 місяці тому

      ​@@keescanalfp5143 however, we can have eˣ=2nπi for n∈ℤ, n≠0, so there are plenty of solutions.

    • @jaedenduhreis3516
      @jaedenduhreis3516 3 місяці тому

      @@keescanalfp5143 e^x cannot be 0, but it can be 2πi (and e^2πi = 1)

    • @Wildcard71
      @Wildcard71 3 місяці тому

      @@keescanalfp5143 Well, not for real numbers.

    • @eroh4202
      @eroh4202 3 місяці тому +1

      e^e^x=1, so x=ln(ln(1));
      x=ln(0) which is undefined

  • @barryomahony4983
    @barryomahony4983 3 місяці тому +216

    keep recursively taking those ln()'s and eventually you end up taking up taking the natural log of a negative number, which isn't real.

    • @Qermaq
      @Qermaq 3 місяці тому +12

      Yep, that's what I came up with. For (A), x = ln(2) which is less than 1. For (B), we're taking the ln of a number less than 1, so x is negative. That means for (c) we need to ln a negative number.

    • @Sonny_McMacsson
      @Sonny_McMacsson 3 місяці тому +5

      But it feels sooo real. I can't explain why. There must be a pie in my eye in the sky.

    • @PRIYANSH_SUTHAR
      @PRIYANSH_SUTHAR 3 місяці тому

      Also if you approach 0 while taking ln, you know you have arrived.

  • @kicorse
    @kicorse 3 місяці тому +100

    For real x, e^x > 0
    Therefore e^e^x > 1
    Therefore e^e^e^x > e
    2

    • @arturjorge2816
      @arturjorge2816 3 місяці тому +2

      how did you coclude 2e accordingly with your calculations?

    • @kicorse
      @kicorse 3 місяці тому +8

      @@arturjorge2816 The solution requires that 2>e, so because we already know that 2

    • @arturjorge2816
      @arturjorge2816 3 місяці тому +7

      @@kicorse Oh yeah, of course. I thoght you wrote 2

    • @arjunphaneesh6051
      @arjunphaneesh6051 3 місяці тому

      Same

    • @MarcoMa210
      @MarcoMa210 3 місяці тому +6

      2 = e = π = 3

  • @trwn87
    @trwn87 2 місяці тому +5

    Ever since I watched your channel, I always box in my answers. It's been super helpful for keeping my math work organised. Every time I solve any math problem, that box reminds me of your amazing work. And you even inspired a video of mine, so thank you so much! ✌️

  • @probropalzlive6961
    @probropalzlive6961 3 місяці тому +32

    Before watching:
    Option C
    Solution to the first one is ln(2), 0.693 approx
    Solution to the second one is ln(ln(2)), which is negative
    Solution to the third one is ln(ln(ln(2))) which is imaginary as input to the outermost ln function is negative.

    • @Saher-tz6cn
      @Saher-tz6cn 3 місяці тому +1

      You got it! great job.

    • @Kevinjoy2305
      @Kevinjoy2305 3 місяці тому +1

      Yay I got it too without calculator

    • @lerb3001
      @lerb3001 3 місяці тому

      Nice, I did it the same way

    • @wyattstevens8574
      @wyattstevens8574 3 місяці тому

      Me too!

    • @GamerGamer-z5s
      @GamerGamer-z5s 2 місяці тому

      I invite u to listen to this recitation of the Noble Quran. ua-cam.com/video/IKZ57sdcFK4/v-deo.htmlsi=i8lD0MDkwVHgdQA3

  • @lizardwithahat4862
    @lizardwithahat4862 3 місяці тому +7

    c(x) = e^e^e^x is a strictly increasing function as x increases. If you look at the limit
    x -> -inf you can see, that e^e^e^x approaches e^e^0 = e^1 = e > 2
    Therefore the domain of c doesn't contain any numbers smaller than or equal to e, which obviously includes 2, meaning: The equation has no real solution.

  • @OmnipresentPotato
    @OmnipresentPotato 3 місяці тому +52

    7:06 if this is a way of advertising your shirt it's hilarious 😂😂

    • @BBP_BKK
      @BBP_BKK 3 місяці тому +2

      "Again, buy my shirt!" lol

    • @asheep7797
      @asheep7797 3 місяці тому

      proof buy my shirt

  • @RefreshingShamrock
    @RefreshingShamrock 3 місяці тому +36

    But imagine if it did have a solution

    • @raytayt_28
      @raytayt_28 3 місяці тому +5

      Was going to answer to this but just got the joke. Good one lol

    • @lakshya4876
      @lakshya4876 3 місяці тому

      @@RefreshingShamrock lmao🤣🤣🤣🤣 night reference

    • @s-1i-youtube
      @s-1i-youtube 2 місяці тому

      It have but its comple,

    • @lakshya4876
      @lakshya4876 2 місяці тому +3

      @@s-1i-youtube you didn't get the joke, by "imagine", he means that it has a complex solution

  • @mpperfidy
    @mpperfidy 3 місяці тому +6

    You never disappoint, sir.

  • @dinosauriaman
    @dinosauriaman 2 місяці тому

    Can you make a Digital SAT Prep series? I wish this guy was my math teacher. Everything you do is amazing and I love watching your videos and trying complex problems beyond my understanding. Your explanations are so clear and concise. It doesn’t hurt to know more math.

  • @7e13architgupta8
    @7e13architgupta8 2 місяці тому +1

    My first thought before watching is that,
    we know e^x is continuously and increasing from x=-∞ to x=∞
    Putting x=-∞ into e^x gives 0.
    Putting x=1 into e^x gives e.
    Therefore, e^-∞ < 2 < e^1 and as e^x is continuous there must be some real x which gives e^x = 2.
    Similarly doing this for the second option we have the function e^e^x again this is continuous from x=-∞ to x=∞ and increasing
    Putting x=-∞ gives 1
    Putting x=0 gives e.
    Therefore, again we have e^e^-∞ < 2 < e^e^0
    Due to continuity we know that some real x fulfils e^e^x = 2
    Now the 3rd option, we basically do the same thing we now the function continuous and increasing across the whole x-axis. Then put values
    Putting x=-∞ gives e.
    Putting x=0 gives e^e.
    So we see that the minimum value for this function is e and e > 2 therefore there exists no real x which satisfies this equation.

  • @PyTorch-nu5nr
    @PyTorch-nu5nr 3 місяці тому +4

    Hi!
    I want to ask you if you can find these limits, and make a video where you show the answer, here are the limits:
    let n be a natural number, calculate these limits;
    1. lim x->0 ((1-cos(x)cos(2x)...cos(nx))/x^2)
    2. lim x->pi/2n (sqrt(sin(2nx)/(1+cos(nx)))/(4n^2*x^2-pi^2))
    pay attention to the parentheses so you won't calculate a different limit, thanks.

    • @idk-yb3yl
      @idk-yb3yl 3 місяці тому

      Yes, i tried it, it's hard and i would like to see the solution 😊

    • @adayah2933
      @adayah2933 3 місяці тому

      I know this request is for somebody else, but maybe this helps:
      1. Just use de l'Hospital's rule twice;
      2. Substitute t = x - pi/2n, the limit doesn't exist because up to asymptotic equivalence the expression is sqrt(-t / 1) / t. By the way, this means that it should have been a limit from the left since otherwise sqrt(-t) is undefined.

  • @dinosauriaman
    @dinosauriaman 3 місяці тому

    I haven't made a comment on any of your videos. But I love your math videos even though I am not quite at the level of math to understand some of these complex concepts. These are fun to watch when I am bored and make me passionate about math.

    • @ДмитрийОрлов-б9г
      @ДмитрийОрлов-б9г 2 місяці тому

      Complex numbers are not such big deal, just remember that every number x = a + b*i (if b=0, then the number is real). Moreover, sometimes the complex coordinates help to visualize (where x is the real part and y is the imaginary part)

  • @djsmeguk
    @djsmeguk 3 місяці тому +3

    The graph of c seems to have a vertical asymptote very close to the y axis, which is fascinating.

  • @mathemagician26
    @mathemagician26 3 місяці тому +8

    e^x > 0, so e^e^x must be greater than e^0. Then e^e^x > 1. Finally, e^e^e^x > e^1 > 2

    • @givikap120
      @givikap120 2 місяці тому

      The easiest way to solve this

  • @someone_random1283
    @someone_random1283 2 місяці тому +1

    Upload more man 😢😢 I'm missing your vids already

  • @michaelwarnecke3474
    @michaelwarnecke3474 3 місяці тому +1

    For the complex solution if you want to find all solutions, you need to attach +2n(use different var names obviously)ipi after _every logarithm_
    If you want to find just one solution on the other hand, you don't need any additional +2nipi

  • @tylosenpai6920
    @tylosenpai6920 3 місяці тому +1

    C...even with -inf, you can't go lower than e with that
    For the other 2, you'll get 0 and 1 as the smallest result, and 2 is above both

  • @legendgames128
    @legendgames128 3 місяці тому +1

    2*pi*sqrt(-1) is congruent to 0 mod 2*pi*sqrt(-1)
    (Does modulus work that way?)

    • @adayah2933
      @adayah2933 3 місяці тому +1

      Yes, this is a sensible way to use modulus.

  • @archangecamilien1879
    @archangecamilien1879 3 місяці тому +1

    I think C, probably...it implies e^(e^x)=ln(2) => e^x = ln(ln(2)), now since 0

  • @rishii2296
    @rishii2296 2 місяці тому

    One calc equation : What's the irl use of finding the volume when we rotate f(x) about a line using the Disc method, the Washer method etc, when we can simply.......
    Take the object and submerge it just below a given level of water of volume *v1 cubed units* and see the new reading of reaching the new greater value of *v2 cubed units* , and get the volume of the object as *v2-v1 cubed units* ??? [Done by Archimedes' Principle]

  • @nicebeaver2053
    @nicebeaver2053 3 місяці тому +85

    Before watching:
    i'll make some tea and then watch

    • @Viki13
      @Viki13 3 місяці тому +3

      Lol

    • @lakshya4876
      @lakshya4876 3 місяці тому +1

      @@nicebeaver2053 bruh

  • @LenovoIdeapad-p8q
    @LenovoIdeapad-p8q 3 місяці тому

    Please upload a video on "radius of curveature at any point (x,y) on any fuction f(x)..... [Derivation]..

  • @realitysl2557
    @realitysl2557 3 місяці тому

    We need power series solution of differential equations MARATHON !!!!😊😊😊

  • @XanderAnimations
    @XanderAnimations 3 місяці тому

    Can you please find the indefinite integral of e^-u^t, where t is a constant?
    If indefinite is impossible, then what is the integral from 0 to ∞ of e^-u^t

  • @gonzalomadariaga6594
    @gonzalomadariaga6594 3 місяці тому

    hey! could you try any eq with this form: a^x+bx^n+c=0

  • @martinrosenau478
    @martinrosenau478 3 місяці тому +1

    If we search for ALL complex solutions of e^e^e^x = 2, shouldn't we already assume that e^e^x may already be complex?
    And if we only search for only SOME solution(s), we don't need the "2*n" but we can simply chose n=0.

    • @ZipplyZane
      @ZipplyZane 3 місяці тому

      Will that result in a different answer, or just add more multiples of 2πn𝑖 that can be consolidated at the end?

  • @aeehy42
    @aeehy42 3 місяці тому +1

    Can you do integrals of all trig functions pls

  • @michaelwarnecke3474
    @michaelwarnecke3474 3 місяці тому

    I think the explanation of having to add +2nipi doesn't get at the mathematics behind it. When you apply the complex "logarithm" on both sides the implication from the latter to the former statement will always be true. And indees 2ipi=0 does imply e^i2pi=1. Similarly when finding the solution to an equation taking an arbitrary log will yield *a* solution, just not the solution.
    If you add the +2nipi, you can look at it like this in general:
    e^x = e^y ==> There exists n in N s.t. x +2nipi = y
    This works for the e^i2pi=1 as well here it implies there exists n in N s.t. 2ipi + 2nipi = 0 and indeed, it does with n=-1

  • @AlfredSpielweis
    @AlfredSpielweis 2 місяці тому

    Hey @blackpenredpen, I just noticed that the links to your pdfs (eg, 100 integrals) is dead. Is there still a way to access them? Thanks in advance

  • @aaronbredon2948
    @aaronbredon2948 3 місяці тому

    My first thought is if the answer is A or B, then C also qualifies, dinde e raised to the power of a number not in R will also not be in R.
    Therefore the only answers if the question is honest is either C or D. On a standardized test, this is already enough that a random answer is better than no answer.
    Then e is around 2.7, so A will have a real solution for x that is less than 1 but greater than 0 because e>2.
    To get a value less than 1 of e^x to get a root for B, we need x to have a value less than 0.
    To get a value less than 0 for e^x to get a root for C, we need x to be a complex number. That is not in R, so C is the answer.

  • @sergeygaevoy6422
    @sergeygaevoy6422 3 місяці тому

    We have found ln() three times for the equation exp(exp(exp(x))) = 2 so should there be +2*pi*m and +2*pi*k too?

  • @rewardkhaled6359
    @rewardkhaled6359 3 місяці тому

    youre my inspiration

  • @gswcooper7162
    @gswcooper7162 2 місяці тому

    I would like to ask if it's possible to solve the following set of non-standard simultaneous equations in x, y, and z for some nice values of a, b, and c (or maybe just a generalised solution)...
    x+y+z = a
    xyz = b
    x^(y^z) = c

  • @snazalicious_2485
    @snazalicious_2485 3 місяці тому

    Hey! If @blackpenredpen sees this, I have always wondered, if you took the Monty hall problem but made both final doors have an active participant in front of each, making their own decision, do the odds change of winning for anybody? If not or if so, what justifies the changes or lack of change? It bugs me thinking about it.

    • @XCC23
      @XCC23 3 місяці тому

      The setup fundamentally does not work with two active players and three doors in total.
      Player A picks door 1
      Player B picks door 2
      Monty now deliberately opens a door that is unpicked and doesn't have the car. But he can only do that in case one of them has the car. So either he can't open a door *or* he can, but then no one can change.
      If you allow for, say, 100 doors instead.
      Player A picks door 1.
      Player B picks door 2.
      Monty now deliberately opens 97 unpicked doors that don't have the car. Now players A and B would both like to switch to the unpicked, unopened door. The car is with p=0.01 behind door 1, with p=0.01 behind door 2 and with p=0.98 behind the unpicked door.

  • @lakshya4876
    @lakshya4876 3 місяці тому +11

    Before watching:
    eeeeeeeeeeeeeeeeeee

  • @axelmauroy4824
    @axelmauroy4824 3 місяці тому +1

    Hello, I'm trying to calculate the quantity
    \int_{0}^{\frac{\pi}{2}} \exp(-y\theta) \cos^{x-1}(\theta) \, d\theta which is a kind of generalized Wallis integral, if anyone has an idea.

  • @thomasmittermair2875
    @thomasmittermair2875 3 місяці тому

    Is there a general form for the derivetive of x^^n, like for x^n there is the powerrule?

  • @swaggyseth1454
    @swaggyseth1454 2 місяці тому

    Very cool video is all I’m saying

  • @albertdor4228
    @albertdor4228 2 місяці тому

    Can you do a video on how to find the inverse of (1+1/x)^x=y? I am really curios because i know it exists but I don't know how to get it even with using the Lambert function

  • @zebra3stripes
    @zebra3stripes 3 місяці тому +1

    Is there a video clip for new viewers with an explanation of what the pen switching is about and why that's his style?

    • @hgu
      @hgu 3 місяці тому

      yeah

    • @Misteribel
      @Misteribel 3 місяці тому

      Check the name of the channel, lol.

    • @pointyheadYT
      @pointyheadYT 3 місяці тому

      All my college profs did that. It's nothing unusual.

  • @rainbowbloom575
    @rainbowbloom575 3 місяці тому +10

    Before watching ...
    I saw the answer in the comments before watching the video lol

  • @92MentalDisorders
    @92MentalDisorders 3 місяці тому

    Hello bprp! Can you solve this problem from russian SDA (School of Data Analysis)?
    Graph F(x)=lim as n goes to inf(nth root(1+x^n+(x/2)^n)
    it seems overcomplicated (btw WA cant solve it), but turns out its not, haha

  • @alimranbbbb6839
    @alimranbbbb6839 3 місяці тому

    So blackpenredpen and a bluepen

  • @jayvardhankhatri4084
    @jayvardhankhatri4084 2 місяці тому

    Sir! I have a question for you (pls make a video on it if u like)
    we know that 1^x=1 for all real x; but I have accidentally proved x to be a rational and not real. pls find the fault in my proof. Here goes:
    first lest take a general case 1^x=a
    therefore: x=ln(a)/ln(1) = ln(a)/ln(e^i2nπ) = ln(a)/i2nπ = -i ln(a)/2nπ {n belongs to Z}
    now for 1^x=1 we sub in '1' for 'a' and we get : x = -i ln(1)/2nπ = -i (i2kπ)/2nπ = 2kπ/2nπ = k/n {k and n belong to Z}
    therefore x=k/n which is the definition of a rational number.
    Pls find a way to fix this!! It will be appreciated.🙏

    • @thetaomegatheta
      @thetaomegatheta 2 місяці тому

      The very first 'therefore' is incorrect. You are dividing by 0 (because ln(1) = 0).

    • @jayvardhankhatri4084
      @jayvardhankhatri4084 2 місяці тому

      ⁠@@thetaomegatheta it’s not only zero
      Zero is just one of the solutions
      e^2npi is general solution

  • @honeybunny5096
    @honeybunny5096 2 місяці тому

    According to you which is the hardest question u have ever solved.. make a video on it ❤

  • @OptimusPhillip
    @OptimusPhillip 3 місяці тому

    C. The natural log of ln(2) is negative, so its natural log is not a real number.
    It's one of those times where it's important to actually compute the answers, rather than just finding an exact solution.

    • @jensraab2902
      @jensraab2902 3 місяці тому

      One might also say that this is "one of those times where it's important to actually compute the answer" before posting a comment! 😛
      Because if you calculate ln(2) it turns out that this is *not* negative after all.

    • @OptimusPhillip
      @OptimusPhillip 3 місяці тому

      @@jensraab2902 ln(2) is positive, but _the natural log _*_of_*_ ln(2)_ is negative

    • @XCC23
      @XCC23 3 місяці тому

      @@jensraab2902 you may say this is one of those times where it's important to actually read the comment before responding to the comment - he says that the natural log of ln(2) is negative - that's ln(ln(2))

    • @jensraab2902
      @jensraab2902 3 місяці тому +1

      @@XCC23 Good point! 😁

  • @ppokhrelpro3251
    @ppokhrelpro3251 3 місяці тому

    How to integrate x^2a^x by di method,pls solve this question

  • @user-pr6ed3ri2k
    @user-pr6ed3ri2k 3 місяці тому

    Third one can't have a solution befause
    sol. for A is ln(2) which is positive but less than e
    the natural log of something less than e is negative → ln(ln(2)) exists but is negative
    ln(ln(ln(2))) is therefore undefined

    • @thetaomegatheta
      @thetaomegatheta 2 місяці тому

      C does have solutions, but they are all complex.

  • @Qermaq
    @Qermaq 2 місяці тому

    Funny the ln(ln(2)) is really close to (sqrt(3)-1)/(-2).

  • @hevado01
    @hevado01 3 місяці тому

    Didn’t use ln at all.
    As e^0 = 1 < e = e^1, the exponent is between 0 and 1. Which is possible for A and B but not for C as e^e^x > e^0 > 1

  • @MagnusAnand
    @MagnusAnand 3 місяці тому

    Nice!!

  • @scottleung9587
    @scottleung9587 3 місяці тому

    Nice!

  • @teslacactus1135
    @teslacactus1135 2 місяці тому

    Isn’t the value dependent on what n is? if n can be any integer does that mean it has multiple solutions?

    • @thetaomegatheta
      @thetaomegatheta 2 місяці тому

      What 'n' are you even talking about?
      EDIT: if we are talking about the solutions for e^e^e^x = 2, then yes, n can be any integer, and yes, there are infinitely many complex solutions there, none of which are real.

  • @armanavagyan1876
    @armanavagyan1876 3 місяці тому

    IMNENSE THANKS PROF

  • @salahlamsaoub7753
    @salahlamsaoub7753 3 місяці тому

    Couldn’t we say all the fuction are bijection and all have a limit lower than 2 in -infinity and all go to infinity in + infinity? So D would be the answer?

  • @adamrussell658
    @adamrussell658 3 місяці тому

    graph y = e^e^e^x and it becomes obvious

  • @caleboji4857
    @caleboji4857 3 місяці тому

    I assume that C should be the answer

  • @richardhole8429
    @richardhole8429 3 місяці тому

    This time I had to watch the video.

  • @jansamohyl7983
    @jansamohyl7983 3 місяці тому

    The whole situation is complex, IMHO the solutions are as much real as they are imaginary.

  • @CorrectHorseBatteryStaple472
    @CorrectHorseBatteryStaple472 3 місяці тому

    Why don't you have to include "+2 n pi i" when you take the logarithm of a positive number, too?

  • @ar0010
    @ar0010 2 місяці тому

    Your channel is so good I actually had to UNSUBSCRIBE since I keep getting distracted with how interesting these are and will spend hours losing myself working out the solutions.

  • @drdca8263
    @drdca8263 3 місяці тому

    Oh, I missed the “real” in the title.
    I was thinking, “well, the image of exp (as a function from C to C) is everything other than zero, so for all but finitely many values of y, there will exist a z such that e^e^e^…e^z = y , right?”

    • @adayah2933
      @adayah2933 3 місяці тому +1

      This reminds me of an old joke told by one of my professors. e^z assumes all values except 0. Thus e^e^z assumes all values except 0 and 1. But it is an entire function, so the Picard's theorem implies that e^e^z is constant. ;P

    • @drdca8263
      @drdca8263 3 місяці тому

      @@adayah2933 Is the hole that e^e^z actually does take on the value 1, because 2pi i (for example) is in the image of e^z ?
      (Uh.. specifically at, z= ln(2pi) + i 2pi/4 )
      Nice joke

    • @adayah2933
      @adayah2933 3 місяці тому +1

      @@drdca8263 Yeah, that's correct.

  • @SakshamSiwa
    @SakshamSiwa 2 місяці тому +1

    Bro what is your educational qualifications?

  • @efekaya09
    @efekaya09 3 місяці тому

    can you find all roots of "x^8-8x+1"

    • @keescanalfp5143
      @keescanalfp5143 3 місяці тому

      yeah no roots .
      as there is no equation .

  • @TheStumbleGuysPlayer
    @TheStumbleGuysPlayer 3 місяці тому

    Can you solve x! = 3?

  • @edvindenbeste2587
    @edvindenbeste2587 2 місяці тому

    First i thought ln2>1 for some reason

  • @vedantiitian
    @vedantiitian 3 місяці тому

    Shiiiiish i missed it ......

  • @ssgamer5693
    @ssgamer5693 3 місяці тому +1

    4:33 💀
    Confidence>Arnold on stage
    U look cooler than Sam Sulek with a pump😂
    That was phenomenal.
    U sound like Jensen Huang😁

  • @Nikioko
    @Nikioko 3 місяці тому

    ln(ln(ln(2))) = ln(−ln(ln(2))) + πi, which is not a real solution.

  • @md-sl1io
    @md-sl1io 3 місяці тому

    i wanted to say d but c felt like a trap

  • @saboorsafi2705
    @saboorsafi2705 3 місяці тому

    c

  • @vinvic1578
    @vinvic1578 3 місяці тому

    Before watching
    Option c tends to e for x = -infty and must have a positive derivative hence it can never be 2 (with x real ofc)

  • @antoniusnies-komponistpian2172
    @antoniusnies-komponistpian2172 3 місяці тому +1

    You forgot something. It's actually:
    e^e^e^x=2
    e^e^x=ln2+(2n+1)πi
    e^x=ln(ln2+(2n+1)πi)+(2n+1)πi
    x=ln(ln(ln2+(2n+1)πi)+(2n+1)πi)+(2n+1)πi
    I'm too lazy to calculate the complex lns but you get the idea.

    • @MichaelRothwell1
      @MichaelRothwell1 3 місяці тому

      Your on the right track, but the 2nd line should be
      e^e^x=ln 2 + 2nπi, n∈ℤ.
      The (2n+1)πi only appears when you take the ln of a negative real number.

    • @antoniusnies-komponistpian2172
      @antoniusnies-komponistpian2172 3 місяці тому

      @@MichaelRothwell1 Ah yes

  • @mgkkhan5891
    @mgkkhan5891 2 місяці тому

    Sir please kindly make videos on algebraic geometry and algebraic topology kindly please see my comment and make videos on it ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤😢😢😢😢
    I have been watching you for a very long timw

  • @ManiKumar-v9g
    @ManiKumar-v9g 3 місяці тому

    helo

  • @michael_betts
    @michael_betts 3 місяці тому

    ln(x)

  • @kent631420
    @kent631420 3 місяці тому

    ln 2 = 0.693
    ln(ln 2) = -0.366
    ln(-0.366) = -1.004 + 3.14i (not real)

    • @robertveith6383
      @robertveith6383 3 місяці тому

      Do not use equal signs as they are not equal.

    • @kent631420
      @kent631420 3 місяці тому

      @@robertveith6383 r/physics

  • @cdkw2
    @cdkw2 3 місяці тому

    I wish I was on instagram lol

  • @sinom
    @sinom 3 місяці тому +2

    ln(2) ln(ln(2)) ln(ln(ln(2))) does not have a real solution

    • @robertveith6383
      @robertveith6383 3 місяці тому

      Your third line does not make sense, because it is neither an equation nor an equality, so it cannot have a "solution." It is a different question whether it has or not has a real value.

  • @abhirupkundu2778
    @abhirupkundu2778 3 місяці тому

    Easiest question

  • @L17_8
    @L17_8 3 місяці тому +4

    Jesus loves you soooo much ❤️

    • @OmnipresentPotato
      @OmnipresentPotato 3 місяці тому +1

      Jesus does not know who I even am, nor who you are. Why would he?
      And does he love criminals as well?

    • @ensiehsafary7633
      @ensiehsafary7633 3 місяці тому

      Fuck jesus

    • @satyam9267
      @satyam9267 3 місяці тому +4

      Cool, I'll add him to my fan club! can he do my dishes?

    • @OmnipresentPotato
      @OmnipresentPotato 3 місяці тому

      @@satyam9267 do not be disrespectful

    • @OldSoulClimber
      @OldSoulClimber 3 місяці тому

      @@OmnipresentPotatowhy not??

  • @Nikioko
    @Nikioko 3 місяці тому +2

    2 < e ⇒ ln(2) < 1
    ln(2) < 1 ⇒ ln(ln(2)) < 0
    ln(ln(2)) < 0 ⇒ ln(ln(ln(2))) ∉ ℝ