You see nonlinear equations, they see linear algebra! (Harvard-MIT math tournament)

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 264

  • @blackpenredpen
    @blackpenredpen  7 місяців тому +11

    Get started with a 30-day free trial on Brilliant: 👉brilliant.org/blackpenredpen/ ( 20% off with this link!)

  • @nzbil8790
    @nzbil8790 7 місяців тому +542

    i have another way
    xy + z + xz + y = 40 + 51
    x(y+z) + y + z = 91
    (x+1)(y+z) = 91, we know that y+z = 19 - x, so :
    (x+1)(19-x) = 91
    19x - x^2 + 19 - x = 91
    x^2 - 18x + 72 = 0
    (x-12)(x-6) = 0
    x = 12 or 6
    then just plug x into the equation and we will get the same value of y and z like in the video, CMIIW :3

    • @NarutoSSj6
      @NarutoSSj6 7 місяців тому +84

      Yea. He said he would leave the substitute method for us to use. This was about using linear algebra to solve the problem

    • @nzbil8790
      @nzbil8790 7 місяців тому +9

      @@NarutoSSj6 okay

    • @dummyaccount1706
      @dummyaccount1706 7 місяців тому +3

      ​@@NarutoSSj6no way, did he really?

    • @ПерстФомы
      @ПерстФомы 7 місяців тому +3

      Я решил так же😄.
      I've decided the same way

    • @Nothingx303
      @Nothingx303 7 місяців тому +2

      Same bro 😊

  • @harshitgautam4436
    @harshitgautam4436 7 місяців тому +23

    Add 1st and second equation (y+z)(x+1)=91
    x+1+y+z=20
    Take x+1 as a and y+z as b
    Then ab=91 and a+b=20
    So (a,b)=(13,7),(7,13)
    x is either 6 or 12

    • @vuqarahadli
      @vuqarahadli 5 місяців тому

      yep i did it in my mind in 1 minute

  • @DistortedV12
    @DistortedV12 7 місяців тому +137

    As they say, “linear algebra is limited to linearity property, but oftentimes, it is easy to fit your nonlinear problem in a linear form”

    • @mattywlion5174
      @mattywlion5174 7 місяців тому +4

      Who says that? The voices in the head?😂

  • @Steve_Stowers
    @Steve_Stowers 7 місяців тому +25

    I started Gauss-Jordan elimination on the matrix at 5:18, got to [1 1 19-x] [0 x-1 x+32] [0 1-x x²-19x+40] and concluded that -(x+32) = x²-19+40 (to make row 2 + row 3 = 0), which gives x=6 and x=12.

  • @landsgevaer
    @landsgevaer 7 місяців тому +52

    Adding first two gives
    (x+1)(y+z) = 91
    Final gives
    (x+1)+(y+z) = 20
    Solving for x+1 and y+z gives the pair (7, 13), in either order.
    Backsubstituting in the first eqns, et voila.

    • @joseluishablutzelaceijas928
      @joseluishablutzelaceijas928 7 місяців тому +5

      Yeah... also I did it in a very similar way but I then interpreted "x+1" and "y+z" as the zeroes of the equation z^2-20*z+91 = 0 and obtained so the two solutions suggested in the video, this problem can thus be solved quite quickly, maybe he simply wanted to intentionally apply concepts from linear algebra here, although that would not be necessary.

    • @Bayerwaldler
      @Bayerwaldler 7 місяців тому +1

      Only under the assumption that x+1 is an integer

    • @landsgevaer
      @landsgevaer 7 місяців тому +5

      @@Bayerwaldler Nope, why? Solving for x+1 and y+z allows them to be any real numbers (or complex or much more). That is a quadratic. It just turns out to be an an integer solution.

    • @landsgevaer
      @landsgevaer 7 місяців тому +1

      @@joseluishablutzelaceijas928 Yes, I agree.
      I give a LinAlg course this quarter and thought of borrowing it as a different type of exercise when I saw the title, but I think it is a bit contrived given that easier approaches come to mind.

    • @Bayerwaldler
      @Bayerwaldler 7 місяців тому +4

      @@landsgevaer Aah - I see. You get a quadratic equation like -u^2 + 20u = 91 where u = x+1. Then the rest follows nicely. Very good!

  • @eqyuio654
    @eqyuio654 7 місяців тому +12

    I have another way
    x + y + z = 19
    xz + y = 51
    xy + z = 40
    y = 51 - xz
    z = 40 - xy
    x + 51 - xz + 40 - xy = 19
    x - xz - xy = -72
    -x (y + z - 1) = -72
    x (y + z - 1) = 72
    x + y + z = 19 then y + z - 1 = 18 - x
    x (18 - x) = 72
    18x - x² - 72 = 0
    x² - 18 x + 72 = 0
    (x - 6) (x - 12) = 0
    x1 = 6 x2 = 12
    Next:
    y + z = 13
    y + 6z = 51
    6y + z = 40
    6y + z = 40
    3y + 3z = 39
    3y + 18z = 153
    (Substracting)
    -20z = -152
    z1 = 7,6 y1 = 5,4
    y + z = 7
    y + 12z = 51
    12y + z = 40
    12y + z = 40
    6y + 6z = 42
    6y + 72 z = 306
    (Substracting)
    -77z = -308
    z2 = 4 y2 = 3
    Solutions:
    x1 = 6
    y1 = 5,4
    z1 = 7,6
    x2 = 12
    y2 = 3
    z2 = 4

  • @lostwizard
    @lostwizard 7 місяців тому +8

    I combined the first two equations, did some algebra to get (x+1)(y+z)=91, used the third to replace (y+z) with (19-x), and arrived at that same quadratic. After which I promptly made a sequence of arithmetic errors solving the quadratic and then subsequently even more arithmetic errors solving the resulting system of equations. It turns out that if you fail at basic arithmetic, math is hard. :)

  • @matheusjahnke8643
    @matheusjahnke8643 7 місяців тому +3

    Time for cheap tricks;
    Computing L1+L2-L3- x L3
    on the left hand side... we have
    (xy+z)+(xz+y)-(x+y+z)-x(x+y+z)
    carefully cancelling...we are left with
    -x-x²
    The right hand side is 40+51-19-19x=72-19x
    -x-x²=72-19x
    Then I got lazy... but we arrive at the same polynomial of x(up to a non-zero scalar multiple) so it should arrive at the same solution

    • @milanstevic8424
      @milanstevic8424 4 місяці тому

      Here's another way:
      ......
      then I got lazy...
      but we arrive to the end of the video anyway, so
      x=6, y=5.4, z=7.6
      and
      x=12, y=3, z=4

  • @zyc4nthropy728
    @zyc4nthropy728 7 місяців тому +3

    2:43 I love how these 3 equations actually do still have a valid real number solution

  • @kontiki7030
    @kontiki7030 7 місяців тому +4

    2:32 was is a coincidence because 5y+2z=10,y+z=3 and 2y-z=1 has a solution which is (y,z)=(4/3,5/3)

  • @sanjogar
    @sanjogar 6 місяців тому +1

    Adding the first two equations, you get (y + z)(1 + x) = 91.
    From the second equation: y + z = 19 - x.
    Substitute and get (19 - x)(1 + x) = 91.
    Solving for x with Bhaskara's Formula, you obtain x = 12 or x = 6, and so on.

  • @mjkhoi6961
    @mjkhoi6961 4 місяці тому

    quicker way to get x=6 and x=12:
    1. add the two top rows together and factor to get (x+1)(y+z)=91
    2. rearrange third row and substitute, y+z=19-x → (x+1)(19-x)=91
    3. expand and factor to get (x-6)(x-12)=0
    avoids having to compute a determinant and factor a cubic, and the inconsistent x=1 solution that the cubic provides

  • @khattab5351
    @khattab5351 5 місяців тому +2

    it is actually solvable using gaussian elimination
    0 x 1 | 40
    0 1 x | 51
    1 1 1 | 19
    replace r1 and r3
    r3-xr2
    r1-r2
    r2-xr3
    r1-(1-x)r3
    doing these steps gives and identity matrix and gives us x, y and z with respect to x
    x=(51x-40)/x+1 -32
    then we get a quadratic equation that gives x=6 or 12
    y=51- 51x^2-40x/x^2-1
    z=(40-51x)/(1-x^2)
    we can then substitute 6 and 12 into these and get y and z
    s1 (6, 5.4, 7.6)
    s2(12, 3 ,4)

  • @joshuanugentfitnessjourney3342
    @joshuanugentfitnessjourney3342 7 місяців тому +15

    Linear algebra is one thevmost useful math tools i never used unless forced to in my undergrad

    • @darcash1738
      @darcash1738 7 місяців тому

      What applications do you use it for now

    • @joshuanugentfitnessjourney3342
      @joshuanugentfitnessjourney3342 7 місяців тому

      @@darcash1738 nothing, couldn't get a job with my math degree.
      Really useful in physics and especially computer science

  • @felipefred1279
    @felipefred1279 7 місяців тому +4

    I was doing this method of eigenvalues to solve systems of differential equations at my differential equations class today. Good lecture professor!

  • @TalkLoudSayNothing
    @TalkLoudSayNothing 7 місяців тому +5

    You don't need to solve the cubic, you can just say that it's easy to see that the first two rows of the 3x3 system of equations are linearly independent, therefore the third row must be expressible as a linear combination of the first two. Then looking at the left hand side, the respective coefficients must be 1/(1+x) and 1/(1+x), which yields 91/(1+x) = 19-x, x=6 or x=12.

  • @jimschneider799
    @jimschneider799 7 місяців тому +7

    How much would you bet that whoever came up with this problem started with the functions x*y+z, x*z+y, and x+y+z, picked some values for x, y, and z, and plugged them in to get the values x*y + z = 40, x*z + y = 51, and x+y+z = 19, only to be surprised later when it had multiple solutions?

    • @janami-dharmam
      @janami-dharmam 7 місяців тому +2

      quadratic equations are expected to have two solutions; because the numbers are real, both roots must be either real or complex conjugate

  • @devondevon4366
    @devondevon4366 7 місяців тому +1

    3, 4, and 12
    This is a simpleproblem for an Harvard MIT math tournament
    xy+ z =40 equation 1
    xz + y =51 equation 2
    x+ y+z = 19 equation 3
    Let's add the first two equations : xy + z =40 and xz + y =51, Hence
    xy + xz + y + z =91
    x(y+z) + 1(y+z) =91 factor out y +z Equation 5
    y + z = 19- x (solving for y+ z , using equation 3)
    x(19-x) + 1 (19-x) = 91 (substituting 19-x into equation 5)
    (x+1)(19-x) =91
    (x+1)(-x+19)=91
    - x^2 + 19- x + 19x =91
    0 = x^2 -18x +72
    0= (x -6)(x-12)
    x =6 and x =12
    Let try x=12 first using equation 1 and equation 2
    12y + z=40
    y + 12z=51
    y = 3, and z=4
    Hence x=12 , y=3 and z= 4
    The next step is to solve when x =6
    and using equation 1 and equation 2 again
    6y + z =40 equation 9
    y + 6z= 51 equation 10
    36y + 6z = 240 mulltiply equation 9 by 6
    y + 6z = 51
    35y = 189
    y= 189/35 y=5.4
    z=266/35 z=7.6
    x =6, y=5.4 , and z=7.6 answer as well This also satisfy the equation when x= 6, Hence x=12
    Hence the answer is x=12, y=3 and z=4

  • @wafiklotfallah9951
    @wafiklotfallah9951 7 місяців тому

    Subtracting Eq 3 from Eq 1 and adding 1:
    xy-x-y+1=(x-1)(y-1)=22
    Subtracting Eq 2 from Eq 1 and adding 1:
    xz-x-z+1=(x-1)(z-1)=33
    Substituting X=x-1,etc., we get:
    XYZ=22Z=33Y
    Or
    Z=3Y/2
    X+Y+Z=16.
    So
    2X+5Y=32
    Subtracting Eq 1 from Eq 2:
    zX-yX=(Z-Y)X=11.
    So XY=22
    Now we get:
    (2X-5Y)^2 = (2X+5Y)^2 - 40XY = 1024 - 880 = 144
    So
    2X-5Y=+/- 12
    4X = 44,20.
    We then get X, Y, Z, and finally get the two solutions:
    x=12,y=3,z=4
    or
    x=6,y=27/5,z=38/5

  • @72kyle
    @72kyle 7 місяців тому

    First eq take last eq:
    xy - x - y = 21 (IV)
    Rearrange third
    z = 19-x-y
    Sub this into second
    x(19-x-y) + y = 51 (V)
    Expand this and add to (IV)
    19x - x^2 -xy +y +xy -x -y = 21+51
    Simplify to
    x^2 -18x +72 =0
    (x-6)(x-12)=0
    x=6, or x=12
    Then sub into (IV) to get y and then into third eq to get z.
    (6,5.4,7.6) and (12,3,4)

  • @janda1258
    @janda1258 7 місяців тому

    Set up the equation x(Eq3) + (Eq3), and simplify using (Eq1) and (Eq2), you get x^2 -18x +72 = 0, then solve for x.
    Next, multiply (Eq1) by x, simplify using (Eq2), solve for y to get y=(40x-51)/(x^2-1) and solve for y.
    Lastly use (Eq3) to solve for z

  • @victorpaesplinio2865
    @victorpaesplinio2865 7 місяців тому +1

    In the example at 2:30, the 3rd equation is actually the 1st minus 3 times the 2nd, meaning it is also redundant

  • @prodbyKamikaZ
    @prodbyKamikaZ 7 місяців тому +2

    I love how the math you do is simple and understandable, but used creatively.

  • @iabervon
    @iabervon 7 місяців тому +3

    Your digression about the 0 determinant not always giving solutions also applies in reverse. If you look at where the first two equations are linearly dependant, that must give 0 for the determinant, which gives you a root of the cubic (x=1) without needing to notice anything about the coefficients.

  • @ΕκπαιδευτήριαΚαντά-η1ω

    det(x 1, 1 x)=x^2-1 detψ(40 1,51 x ) =40x-51 detz(χ 40,1 51)=51χ-40 ψ=detψ /det z=detz/det we substitute into third equation x^3-19x^2 +90x-72=0 x1 x=6 ψ=5.4 z=7.6 x=12 ψ=3 z=4 x>=1 x

  • @kiopa5233
    @kiopa5233 7 місяців тому +1

    Hey I am an high schooler, I didn’t know most of the determinant formulas you used , but your video was fascinating. Thank you.

  • @Qermaq
    @Qermaq 7 місяців тому +3

    2:42 y = 4/3, z = 5/3. The third equation works just fine....

  • @zeron85
    @zeron85 7 місяців тому +4

    Proud to have been able to solve this problem

  • @rcnayak_58
    @rcnayak_58 7 місяців тому

    We can also solve it without using determinant. For example, let us arrange these equations as xz + y = 51 ...(1), xy + z = 40 ...(2) and x + y + z = 19 ...(3). Adding (1) and (2) and factorizing, we get (x + 1)(z + y ) = 91 ... (4). Again subtracting (2) from (1), we get , on factorizing, (z - y)(x - 1) = 11 ...(5). From (3), (z + y) = 19 - x ...(6). Putting (z + x ) value in (4) , we get (x + 1)(19 - x) = 91 ... (7) solving this , we get ( x - 6)(x -12) =0, so that we have x = 6 or x = 12. Case - I, when x = 6, in (3), we we get z + y = 13 ... (7) and again putting x =6 in (5), we get (z - y) = 11/5 ... (8). From (7) and (8) we get z = (1/2)(13+11/5) = 7.6 and y = (1/2)(13 - 11/5) = 5.4. Therefore, the first solution set {x, y, z) = {6, 5.4, 7.6}. Case - II when x =12: putting this in (3) z + y = 7 ...(9). Again putting x = 12 in (5) we get z -y = 1 ...(10). From (9) and (10), we get z = (1/2)( 7 + 1) = 4 and y = (1/2)( 7 - 1) = 3. Therefore, the 2nd solution set {x, y, z) = {12, 3, 4}.

  • @christianbarnay2499
    @christianbarnay2499 7 місяців тому

    7:43 You can immediately see there's a X-1 factor in the determinant and factor it right away before expanding the 19-X.
    X²(19-X)+51+40-(19-X)-51X-40X
    = (X²-1)(19-X)+51(1-X)+40(1-X)
    = (X-1)(X+1)(19-X)-91(X-1)
    = (X-1)((X+1)(19-X)-91)
    = (X-1)(-X²+18X-72)

  • @BalajiKomanabelli-nd1xq
    @BalajiKomanabelli-nd1xq 7 місяців тому +1

    Loved this approach, thinking out of the box

  • @cdkw8254
    @cdkw8254 7 місяців тому +6

    I haven't heard about any of those things but it sounds cool.

  • @abhinavyadav8408
    @abhinavyadav8408 6 місяців тому

    we can solve by adding the equations
    xy+z=40 eq1
    xz+y=51 eq2
    x+y+z=19 eq3
    on adding eq. 1,2,3
    x+xy+xz+2y+2z=110
    adding 2 on both the sides
    x(y+z+1) 2(y+z+1)=112
    (x+2) (y+z+1)=112 -------equation 4
    from equation 3
    y+z=19-x
    substituting y+z=19-x in eq. 4.
    (x+2) (-x+20)=112
    -x^2+18x-72=0
    (x-6)(-x+12)=0--------equation 5
    from equation 5 x=6, x=12
    substituting x=6 in equations 1,2,3 we get
    6y+z=40--eq6
    6z+y=51---eq7
    6+y+z=19 --eq8
    from equation 8
    y+z=13
    from equation 6
    z=40-6y
    substituting z=40-6y in eq. 8
    -5y=-27
    y=5.4
    substituting y=5.4 in equation 8
    z=7.6

  • @TheBlueboyRuhan
    @TheBlueboyRuhan 7 місяців тому +2

    THANK YOU for this idea, can't believe is was that simple to fix x as a constant and take determinants - since x is non-zero!
    Ignore all of the comments talking about the trivial way to solve this with gauss-elim, they don't understand the power this method has

  • @Protract_Loop
    @Protract_Loop 7 місяців тому

    Just subtract eq.3 from eq.2 = eq.4
    Subtract eq.4 from eq.1=eq.5
    Substitute the value of x from eq.3 in eq.5
    Factorise eq.5 and you get value of x
    Substitute value of x and y in eq.1 to get y and z

  • @carlosangulo2888
    @carlosangulo2888 7 місяців тому +3

    Love the way u solve it. Thx. ❤

  • @lucho2868
    @lucho2868 5 місяців тому

    Suming the first two equations gives (x+1)(y+z) = 91 and the third equation gives x+1+y+z=20 thus x+1 = 10 +/- sqrt(100-91) = {13,7}. In the first case (x=12) we get (Cramer) y=(40x-51)/143=429/143=3 and z=(51-3)/12=4. In the second case (x=6) we get (Cramer) y=(6×40-51)/35=189/35=27/5 so z=40-27*6/5=38/5. So, after checking they work, the set of solutions is {(12,3,4),(6,27/5,38/5)}. EZ but tedious.

  • @MarieAnne.
    @MarieAnne. 12 днів тому

    Solve:
    (1) xy + z = 40
    (2) y + xz = 51
    (3) x + y + z = 19
    First we solve for y and z in terms of x
    (1)−(3) xy − x − y = 21 → y = (x+21)/(x−1)
    (2)−(3) xz − x − z = 32 → z = (x+32)/(x−1)
    Next we plug into (3) to solve for x
    x + (x+21)/(x−1) + (x+32)/(x−1) = 19
    x(x−1) + (x+21) + (x+32) = 19(x−1)
    x² − x + 2x + 53 = 19x − 19
    x² − 18x + 72 = 0
    (x−6) (x−12) = 0
    x = 6, x = 12
    Then we use value of x to find y and z.
    x = 6, y = (6+21)/(6−1) = 27/5 = 5.4, z = (6+32)/(6−1) = 38/5 = 7.6
    x = 6, y = (12+21)/(12−1) = 33/11 = 3, z = (12+32)/(2−1) = 44/11 = 4
    Solutions:
    *(x, y, z) = (6, 5.4, 7.6) or (12, 3, 4)*

  • @twelfthdoc
    @twelfthdoc 7 місяців тому

    Before looking at BPRP's solution: I was able to factor the information in the equations into a quadratic in terms of x, yielding two results. One case yielded a solution in the Rationals while the other yielded a solution in the Naturals, so depending on the set the variables are meant to be from, there are either one or two solutions.
    After watching BPRP's solution: the quadratic I obtained was the same, but the factor of (x - 1) in the cubic was a redundant solution because of the matrix multiplication. I eliminated that solution because I had used a linear transformation while I was manipulating the original equations to extract the quadratic in x. Always worth checking solutions with the original equations as well as any obtained through linear algebra manipulation to ensure they are true solutions rather than redundant (i.e contradictory) solutions.

  • @nyaanyaa7
    @nyaanyaa7 7 місяців тому

    xy+(19-x-y)=40
    x(19-x-y)+y=51
    adding both eq to get
    18x-x^2+19=91
    so x^2-18x+72=0
    then x=6, x=12
    solve for y and z
    and get 2 solutions
    12,3,4 and 6,27/5,38/5

  • @lawrencejelsma8118
    @lawrencejelsma8118 7 місяців тому +2

    It was great seeing an extraneous solution that didn't solve the systems of those nonlinear equations by trying to turn a 3x2 matrix multiplied by a 2x1 matrix to form a 3x1 matrix of solutions. We saw extraneous x=1 that didn't work with x=6 and x=12 that both do work as solutions in what was taught. Sometimes looking at a problem creating polynomial solutions both extraneous and good solutions get intermixed to allow us to see potentials that fail but can inter result. 👍

  • @graikoyt
    @graikoyt 7 місяців тому

    (xy + z) + (xz + y) - (x + y + z) = 40 + 51 + 19
    xy + xz - x = 72
    x(y + z - 1) = 72
    x(19 - x - 1) = 72
    18x - x^2 = 72
    x^2 - 18x + 72 = 0
    x = 6 or 12
    When x=6 or 12, you can solve for y and z using first two equations
    Solutions are (6,27/5,38/5) and (12,3, 4)

  • @TheJaguar1983
    @TheJaguar1983 7 місяців тому +4

    When I was in school these were called "Simultaneous Equations". Not sure when the term "Systems of Equations" became the preferred term. I only heard for the first time about a year ago.

    • @oloyt6844
      @oloyt6844 7 місяців тому +6

      Extremely interchangeable but system usually refers to 3+ variables in my experience

    • @pneujai
      @pneujai 7 місяців тому +7

      ‘simultaneous equations’ is commonly used in school mathematics
      ‘system of equations’ is commonly used in the field of linear algebra, from high school to university

  • @curtiswfranks
    @curtiswfranks 7 місяців тому +1

    For those who are saying to do it a different way: Often, your method is limited to basically this exact problem. If we change this problem so that the coefficients or constants are different, your technique becomes cumbersome. But this technique will continue to work without modification. The solutions may be gross, but it nonetheless will still obtain them.

  • @Anonymous-tq2iu
    @Anonymous-tq2iu 7 місяців тому +8

    6:16 determinant of a determinant ?

  • @ethanthiebaut2596
    @ethanthiebaut2596 7 місяців тому +1

    More of these please 🙏🙏

  • @matheodaniloalvitreslopez3159
    @matheodaniloalvitreslopez3159 7 місяців тому +3

    This question is to be answered until 11:59 am, for those who have the last digit of their DNI 5: What is the letter you like the most among A, B, C, I, N , The m?

  • @jmsaucedo
    @jmsaucedo 7 місяців тому +3

    Just watch Gilbert strang course too

  • @marusukech.5049
    @marusukech.5049 7 місяців тому +2

    Another way is let w = y + z and it can form an quadratic equation

  • @hai.nguyen995
    @hai.nguyen995 7 місяців тому +1

    I guess I over-complicated this:
    xz + y - (x - y - z) = 32 => xz - x - z +1 = 33 => (x-1)(z-1) = 33 (1)
    xz + y - xy - z = 11 => (x-1)(z-y) = 11 (2)
    1/2 => z - 1 = 3(z - y) => z = (3y - 1)/2 => x = (39 - 5y)/2
    xy + z = 40 => 5y^2 - 42y + 81 = 0; y = 3 or y = 27/5
    (x,y,z) = (6, 27/5, 38/5) or (12, 3, 4)

  • @Chris_387
    @Chris_387 7 місяців тому +300

    Add the first 2 equations, factor and take 2 cases, you are done

    • @danieldepaula6930
      @danieldepaula6930 7 місяців тому +87

      If I understood correctly, that's the same way I did it. If you add the first two equations, you get x(y+z) + (y+z) = 91. After that, using the 3rd equation, you get y+z = 19 - x. So, you can easily find both values ​​of x. Then, using the first two equations again (this time, as a linear system of order 2), you find y and z for both cases.

    • @Bayerwaldler
      @Bayerwaldler 7 місяців тому +27

      Only under the assumption that x+1 is an integer

    • @ZackBlackwood97
      @ZackBlackwood97 7 місяців тому +5

      ​@danieldepaula6930 genuinely asking as I'm not 100% sure, when you add the first two equations together don't you need to do X×Z?

    • @danieldepaula6930
      @danieldepaula6930 7 місяців тому +37

      ​​@@ZackBlackwood97 I didn't understand exactly what you mean, but this is it (step by step):
      xy + z + xz + y = 40 + 51
      xy + xz + y + z = 91
      x*(y+z) + (y+z) = 91
      And as you have that y+z = 19-x by the third equation, you can find x.

    • @djconnel
      @djconnel 7 місяців тому

      @@danieldepaula6930but that has complex roots

  • @CalmArgha1243
    @CalmArgha1243 7 місяців тому

    The way I had solved this I got values which when added and multiplied givens answers close to 40,51,19. The set of answers was (x,y,z)=(7.3,4.6,6.2) and this is the only set I got.

  • @mauriziomorales5303
    @mauriziomorales5303 7 місяців тому

    Beautyfull. Thank you very much because you helped me to solver this exercise of Lineal Algebra.

  • @mikezilberbrand1663
    @mikezilberbrand1663 6 місяців тому

    (x+1)*(y+z)=91 - add the first two. x+1 + y+z = 20 Solve the quadratic.

  • @ChessBros-ic5tz
    @ChessBros-ic5tz 7 місяців тому +3

    What happens if you equate phytagoras Therom to the quadratic formula or is that not possible

  • @Maman-Setrum
    @Maman-Setrum 7 місяців тому

    wow, i like how you using matrix as part of solving

  • @ahmetalicetin5331
    @ahmetalicetin5331 7 місяців тому

    Can you make a video on how to use Weierstrass factorization theorem?

  • @nirorit
    @nirorit 7 місяців тому

    I multiplied the 3rd by x, and then substituted xy and xz with the first 2 equations and then substituted y+z with the 3rd equation to get a quadratic equation with only x.

  • @paultoutounji3582
    @paultoutounji3582 7 місяців тому +1

    You could have just added equations 1 and 2 and factorise as (x+1)(y+z) = 91. Then substitute from equation 3 y+z = 19-x…..

  • @joellouis1005
    @joellouis1005 7 місяців тому

    I just think of an easy way which high school can solve this.
    Since x +y +z = 19,
    z = 19 -x -y ;
    xy +z = 40,
    so xy + 19 -x -y = 40,
    then xy -x -y =21 … (1)
    xz + y = 51,
    so x (19 -x -y) +y = 51,
    then 19x -x^2 -xy +y = 51 …(2)
    Put (2) into (1),
    -x^2 +19x -xy +x +y -x =51,
    so -x^2 +18x -21 =51,
    x^2 -18x +72 = 0.
    We can get x = 6 or 12

  • @januszkorwin-mikke7277
    @januszkorwin-mikke7277 7 місяців тому +1

    I am oldschool. I do not count. I think. Suppose x, y, z are N. Then. From [3] either one is odd or all three are odd. From [2] all cannot be odd and the one odd is y. If y=1 then [1] & [3] contradict. If y=3 then from [1]&[3] x=12 and z=4. I am lucky - am I not? It is called intuition... If y=5 then x=13/2 not-N, contradict [2]. If y=7 then x=14/3 not-N contradict [2]. If y=9 then x=15/4 not-N contradict [2]. If y=11 then x=16/5 not-N contradict [2]. If y=13 then x=1/2 not-N contradict [2]. If y=15 then x=2/7 not-N contradict [2]. If y=17 then x=1/8 not-N contradict [2]. If y=19 then x=20/9 contradict [2]. All done in head in 2 mins. Probably there is also one non-N solution, but I am going to bed. O!
    @nzbil8790 is better, using no intuition

  • @rogo7330
    @rogo7330 7 місяців тому +1

    Basically, we assume that this system is solvable, and from that assumption we solving simpler system, avoiding undefined behaviour, like setting variable to zero.

  • @hpsmash77
    @hpsmash77 6 місяців тому

    11:55 that transition

  • @alexmucci5327
    @alexmucci5327 7 місяців тому +2

    So, we're basically treating the X as a parameter and using the standard method for linear system? Well, pretty genious move; good job americans

  • @scottleung9587
    @scottleung9587 7 місяців тому +1

    Got 'em both!

  • @cringotopia8850
    @cringotopia8850 7 місяців тому

    Truely useful method that gave me new insights about using the traditional Gaussian Elimination
    However, If I were to be in that tournament, i would use the traditional Substitution method, because it seems specifically easier and faster in this question

  • @manavverma55
    @manavverma55 5 місяців тому +1

    Dude I have similar question for you to solve x+y+z=4, xy+yz+zx= -7, xyz= -10 find x, y & z. tell me in another way or easy way for this question i try substitution but it was became very long and lengthy.

  • @prateek1.9
    @prateek1.9 6 місяців тому

    add all eqns , we get
    xy + z + xz + y + x + y + z = 110
    xy + xz + x + 2y + 2z = 112 - 2
    x(y + z + 1) + 2y + 2z + 2 = 112
    x(y + z + 1) + 2(y + z + 1) = 112
    (y + z + 1)(x + 2) = 112
    (y + z + 1)(x + 2) = 8 * 14
    x + 2 = 14, y + z + 1 = 8
    x = 12..........(a), y + z = 7.........(b)
    given xy + z = 40
    from eq(a),
    12y + z = 40
    11y + (y + z) = 40
    from eq(b),
    11y = 40 - 7
    11y = 33
    y= 3.........(c)
    also given,
    x + y + z = 19
    from eq(a) and (c),
    12 + 3 + z = 19
    z = 4
    (x,y,z) = (12,3,4) integer soln

  • @kacodemonio
    @kacodemonio 7 місяців тому

    This is a beautiful problem.

  • @Nine-2545
    @Nine-2545 6 місяців тому

    I have a question, Let A B C, and k are Real numbers. If 2k^2k = ((A+B+C)^(A+B+C))/2, find k in terms of A, B, and C.

  • @tharunsankar4926
    @tharunsankar4926 6 місяців тому

    I assumed that x had to control the rank of the system. I determined that the rank had to be 2, so I did Converted the equation to augmented matrix system (4 x 3) and determined the x value to ensure that one of the rows go to 0’s for rank 2.
    I got I think 2 values for x (I have to check I did this a long time ago) that trip this equation to a rank 2. Then solved for y a and x using cramers rule.
    Anyways moral of the story: I don’t think you have to get the characteristic polynomial to trip this into a diminished rank anyways.

  • @MichaelZankel
    @MichaelZankel 7 місяців тому +1

    Yess I asked for more last video and got more 😂

  • @dimokratisnt3637
    @dimokratisnt3637 7 місяців тому

    Any closed contour integral videos?

  • @__NK_37
    @__NK_37 7 місяців тому +1

    just add equation first and second and factorise

  • @matheodaniloalvitreslopez3159
    @matheodaniloalvitreslopez3159 7 місяців тому +1

    Esta pregunta es para que me respondan hasta las 11:59 am, para los que tienen el último dígito de su DNI 5 : ¿Cuál es la letra que les gusta más entre la A, la B, la C, la I, la N, la M?

  • @davidturner9827
    @davidturner9827 7 місяців тому +1

    (40 + 51) / (x + 1) = 19 - x

  • @donwald3436
    @donwald3436 5 місяців тому

    What is this sorcery dividing by x-1 can you explain that technique????

  • @notfancy2000
    @notfancy2000 7 місяців тому +1

    I haven't seen Ruffini in ages!

  • @Why-cl8pf
    @Why-cl8pf 7 місяців тому +1

    Solved this in the real test! :)

  • @nuclearrambo3167
    @nuclearrambo3167 5 місяців тому

    i was thinking of row reduction while treating x as const

  • @armanavagyan1876
    @armanavagyan1876 7 місяців тому +2

    Pretty interesting PROF 👍

  • @DistortedV12
    @DistortedV12 7 місяців тому +2

    The part you kinda zipped through was that cube root part? You said assume 1 is a sol. and then proceeded with that approach I’m not familiar with

    • @reyhananiz5099
      @reyhananiz5099 7 місяців тому +2

      The coefficients add up to 0, so x=1 is a solution.

    • @lakshya4876
      @lakshya4876 7 місяців тому +2

      He used the remainder theorem.
      Remainder theorem says that if a polynomial (say p(x)) is divided by another linear polynomial(say (x-a)), then the remainder is given by p(a).
      If p(x) is divided by (x-1), then remainder is given by p(1).
      But, p(1) means x=1, so if the coefficients all add up to zero, then (x-1) should be a factor of p(x)

    • @TalkLoudSayNothing
      @TalkLoudSayNothing 7 місяців тому +1

      Guessing solutions and using the remainder theorem is a common method of solving higher-order equations :)

  • @ianmathwiz7
    @ianmathwiz7 5 місяців тому

    If we take our solutions to be in projective space, the x=1 case provides one more solution at infinity: (1, 0, 0, 0).

  • @Skank_and_Gutterboy
    @Skank_and_Gutterboy 7 місяців тому

    The method above makes absolutely no sense to me. I solved the bottom equation for y:
    y=19-x-z
    Then I substituted it into the first two equations which yields the following two equations in terms of x and z:
    -x^2+19x-xz+z=40
    -x+xz-z=32
    When you add these two equations together, the z and xz terms cancel out and you're left with the quadratic: x^2-18x+72=0, so x=6 or 12. From there, it is easy to solve for y and z. (x,y,z) = (6, 27/5, 38/5) or (12, 3, 4).

  • @cillixnlynch_
    @cillixnlynch_ 7 місяців тому

    Could also use multivariable Newton method

  • @AleksanderRush
    @AleksanderRush 7 місяців тому

    Мне проще было бы сделать по-другому:
    x=19-(y+z);
    y(19-y-z)+z=40
    z(19-y-z)+y=51;
    После сложения уравнений и преобразования получается
    19(y+z)-(y+z)²+(y+z)=91
    Заменяем (y+z)=k;
    k² - 20k+91=0; k=7;13 =>
    x=6;12
    А дальше аналогично...

  • @anarchosnowflakist786
    @anarchosnowflakist786 7 місяців тому +1

    hi, thanks for the video, it's interesting as always, do you have a video where you detail more the method you're using at 10:00 for finding the factors of the cubic equation ?
    also I tend to have the issue in maths that I try to brute-force a lot of calculations without thinking to use methods that would be easier, like in this case using substitutions and big annoying calculations instead of just thinking to use the determinant like you did, so do you have any method beyond just habit, training and exercises to have some idea of what methods to use whenever you see a new math problem ? is there anywhere you might check online if you're not sure what to do ? I'd love to see how your thought process goes from the moment you discover the problem

    • @cristoballcon
      @cristoballcon 6 місяців тому

      For the factors part, as he said in the video, he inspect the equation and saw that if you replace 1 in X then you will get 0=0 meaning that the cubic equation is divisible in (x-1) then you do so using ruffini method, sorry for the bad english, but I hope you understood

  • @yoav613
    @yoav613 7 місяців тому +1

    Nice and very easy

  • @ulysslombu-dji-mabicke1868
    @ulysslombu-dji-mabicke1868 5 місяців тому

    Nice. I didn't know that trick.

  • @sebastiaogabrielsoaresdeol3675
    @sebastiaogabrielsoaresdeol3675 7 місяців тому

    Is there a better way to check if the solutions are valid? Or is the only alternative to testing?

  • @siddharthchabra9022
    @siddharthchabra9022 3 місяці тому

    the Determinant method yields 3 values of x and 1 is invalid. But can you explain why and where the third value came from? nothing is math just happens there is a reason for everything

  • @RisetotheEquation
    @RisetotheEquation 7 місяців тому +1

    The most important thing to remember:
    MIT >> Harvard

  • @matthewcrowe3770
    @matthewcrowe3770 7 місяців тому

    I looked at it as an eigenvalue problem in disguise. You want the eigenvalue (-x) of the matrix {{0, 1, -40},{1,0,-51},{1,1,-19}}, where the eigenvector is (y,z,1). The eigenvalues are x = 1,6,12 and the reason 1 doesn't work as a solution is that the corresponding eigenvector is (1,-1,0) which doesn't have a 1 in the third position, contradicting the form (y,z,1).

  • @mehdimosbah3654
    @mehdimosbah3654 2 місяці тому

    xy+z-x-y-z =21
    x(y-1)-y=21
    x(y-1)-y+1=22
    (x-1)(y-1)=22
    x=12, y=3
    z=19-15=4
    (12,3,4)

  • @eagle32349
    @eagle32349 7 місяців тому

    Could you explain why cos(sin(1/e)) ≈ 1? (In degrees)

    • @yurenchu
      @yurenchu 7 місяців тому

      It's because when x ≈ 0 ,
      sin(x) ≈ x
      and
      cos(x) ≈ 1

  • @fernandolino6493
    @fernandolino6493 7 місяців тому

    12,4,3

  • @ChickensEgg
    @ChickensEgg 7 місяців тому +1

    [I will be like you sir (Mathematician)]

  • @adivs6750
    @adivs6750 7 місяців тому

    i have a method
    xy+z+11=xz+y
    xz-z+y-xy=11
    z(x-1)-y(x-1)=11
    x=12
    z-y=11
    then 12y+z=40
    y+12z=51
    solve for y and z
    automatically satisfes third eqn

  • @chunpanhuen2681
    @chunpanhuen2681 7 місяців тому

    It is a really good question