No Calculator Allowed || 9O% of Students Failed This Tricky Math Test ||

Поділитися
Вставка
  • Опубліковано 29 жов 2024

КОМЕНТАРІ • 11

  • @jackbryan9615
    @jackbryan9615 19 годин тому +1

    It's very straight forward:
    5^3 = 125, so we can approximate 5^100 to 125^33.3
    2^7 = 128, so we can approximate 2^234 to 128^33.5
    Now it's obvious that 128^33.5 > 125^33.3, so 2^234 > 5^100

    • @jackbryan9615
      @jackbryan9615 19 годин тому +1

      Just watched and seen that's what the video ends with, but with a lot of unnecessary meandering beforehand

  • @wes9627
    @wes9627 2 дні тому

    2^{334} vs 10^100; 2^3.34 vs 10; 2^{10/3} vs 10; 2^10 vs 1000; 1024 vs 1000, so 2^234>5^100
    Check 234*ln2=162.196... and 100*ln5=160.944...

  • @Lakin3
    @Lakin3 День тому

    I multiplied with 2^100 to get 2^(234+100) = 2^334 and 5^100*2*100 = 10^100.
    So is 2^334 bigger than 10^100?
    2^10= 1024. Thats 3 digits more than 2^0=1. So every power of 10 we win slightly more than 3 digits as our result is not exactly 1000 but bigger. 334/10 means we do that 33,4 times. 3*33,4=100,2. So we have a bit more than 100,2 digits or 10^100.
    This would lead me to 2^234 > 5^100.
    Was my way correct?

  • @boriscat1999
    @boriscat1999 16 годин тому

    or you could have memorized Log for the first 10 numbers to a few digits and solved it like an engineering student. (also why having a slide ruler was often better than a simple 4 function calculator)

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 дні тому

    1^1^3^2^2 vs5^10^10 1^1^2vs5^2^5^2^5 1^2vs1^1^1^2^1 (x ➖ 2x+1). 1^2vs2^1 (x ➖ 2x+1) 2^234 >5^100

  • @ramza2779
    @ramza2779 4 години тому

    The task is more difficult 5^51 or 2^118 ?

  • @johannwatzinger1122
    @johannwatzinger1122 День тому

    Very simple 5^100 = 2°232,2 therefore its clearly < than 2^234

    • @okaro6595
      @okaro6595 19 годин тому

      Just how did you conclude that?

    • @johannwatzinger1122
      @johannwatzinger1122 11 годин тому

      @@okaro6595 I have to admit I used a calculator. log5/log2 = 2,3219 (2,322).
      2^2,332= 5, therefore 5^100 has to be 2^(100x2,322)

  • @JSSTyger
    @JSSTyger 21 годину тому

    Ill say 5^100