Learn with Christian Ekpo
Learn with Christian Ekpo
  • 1 608
  • 2 695 542
GERMANY || A Nice Olympiads Trick || How to Solve for x? #maths
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem.
Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills!
Topics Covered:
Exponent simplification tricks
Factorization for large numbers
Olympiad-level problem-solving tips
Don’t miss this essential trick that makes math so much easier!
#maths
Переглядів: 37

Відео

AMERICAN || A Nice Olympiads Trick || No Calculator Allowed #maths
Переглядів 5111 годин тому
Welcome to Learn with Christian Ekpo, this channel is your go-to destination for mastering math concepts, solving challenging problems, and discovering clever tricks to tackle Olympiad-level questions-all without relying on a calculator. Whether you're a student preparing for competitions, a math enthusiast, or someone who loves logical problem-solving, this channel is designed to sharpen your ...
AMERICAN || A Nice Olympiads Trick || No Calculator Allowed #maths
Переглядів 5014 годин тому
Welcome to Learn with Christian Ekpo, this channel is your go-to destination for mastering math concepts, solving challenging problems, and discovering clever tricks to tackle Olympiad-level questions-all without relying on a calculator. Whether you're a student preparing for competitions, a math enthusiast, or someone who loves logical problem-solving, this channel is designed to sharpen your ...
GERMANY || A Nice Olympiads Trick || How to Solve for n? #maths
Переглядів 1862 години тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
AMERICAN || A Nice Olympiads Trick || Which is Bigger?
Переглядів 782 години тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
JAPAN || A Nice Olympiads Trick || How to Solve for m? #maths
Переглядів 1712 години тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
JAPAN || A Nice Olympiads Trick || How to Solve for x? #maths
Переглядів 842 години тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
AMERICAN || A Nice Olympiads Trick || #maths
Переглядів 554 години тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
JAPAN || A Nice Olympiads Trick || How to Solve for n? #maths
Переглядів 3884 години тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
AMERICAN || A Nice Olympiads Trick || Which is Bigger?
Переглядів 874 години тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
AMERICAN || A Nice Olympiads Trick || How to Solve for n? #maths
Переглядів 2,1 тис.7 годин тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
AMERICAN || A Nice Olympiads Trick || How to Solve for n? #maths
Переглядів 1697 годин тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
AMERICAN || A Nice Olympiads Trick || How to Solve for x? #maths
Переглядів 3347 годин тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
GERMANY || A Nice Olympiads Trick || How to Solve for n? #maths
Переглядів 1,6 тис.9 годин тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
GERMANY || A Nice Olympiads Trick #maths
Переглядів 1449 годин тому
Looking to master tricky math problems like a pro? In this video, I break down a classic Olympiad-style problem. Learn the quick and clever factoring trick to simplify massive exponents in seconds. Perfect for math enthusiasts, competitive exam prep, and anyone looking to level up their problem-solving skills! Topics Covered: Exponent simplification tricks Factorization for large numbers Olympi...
GERMANY || A Nice Olympiads Trick #maths
Переглядів 5749 годин тому
GERMANY || A Nice Olympiads Trick #maths
GERMANY || A Nice Olympiads Trick #maths
Переглядів 28512 годин тому
GERMANY || A Nice Olympiads Trick #maths
GERMANY || A Nice Olympiads Trick #maths
Переглядів 85212 годин тому
GERMANY || A Nice Olympiads Trick #maths
GERMANY || A Nice Olympiads Trick #maths
Переглядів 56112 годин тому
GERMANY || A Nice Olympiads Trick #maths
GERMANY || A Nice Olympiads Trick #maths
Переглядів 20114 годин тому
GERMANY || A Nice Olympiads Trick #maths
GERMANY || A Nice Olympiads Trick #maths
Переглядів 95714 годин тому
GERMANY || A Nice Olympiads Trick #maths
GERMANY || A Nice Olympiads Trick #maths
Переглядів 1 тис.14 годин тому
GERMANY || A Nice Olympiads Trick #maths
INDIAN || A Nice Olympiads Trick #maths
Переглядів 35616 годин тому
INDIAN || A Nice Olympiads Trick #maths
JAPAN || A Nice Olympiads Trick || Can You Solve for x? #maths
Переглядів 18816 годин тому
JAPAN || A Nice Olympiads Trick || Can You Solve for x? #maths
GERMAN || A Nice Olympiads Trick #maths
Переглядів 86516 годин тому
GERMAN || A Nice Olympiads Trick #maths
INDIAN || A Nice Olympiads Trick #maths
Переглядів 24919 годин тому
INDIAN || A Nice Olympiads Trick #maths
JAPAN || A Nice Olympiads Trick || Can You Solve for x? #maths
Переглядів 37319 годин тому
JAPAN || A Nice Olympiads Trick || Can You Solve for x? #maths
INDIAN || A Nice Olympiads Trick #maths
Переглядів 5019 годин тому
INDIAN || A Nice Olympiads Trick #maths
INDIAN || A Nice Olympiads Trick #maths
Переглядів 67721 годину тому
INDIAN || A Nice Olympiads Trick #maths
GERMANY || A Nice Olympiads Trick #maths
Переглядів 22521 годину тому
GERMANY || A Nice Olympiads Trick #maths

КОМЕНТАРІ

  • @flyingspirit3549
    @flyingspirit3549 6 годин тому

    Even if there are alternative procedures to solve this equation, this is still a good review of an area of algebra that I studied some time (some LONG time!) ago. Thanks for posting this.

  • @VivekKumar-c8d3i
    @VivekKumar-c8d3i 10 годин тому

    Sir very good question ❤❤❤❤❤❤❤

  • @MeinhartKöster
    @MeinhartKöster 17 годин тому

    i suggest to subtract root 2 on both sides

  • @veijolalli326
    @veijolalli326 День тому

    X=1 is The Only solution. You can't take log from complex number!

  • @yukiicimoro7201
    @yukiicimoro7201 День тому

    3(n^1/2)=2 n=(2/3)^2=4/9

  • @sasadjordjevic7398
    @sasadjordjevic7398 День тому

    Much easier is to leave square roorh x on 1 side and then square both side. I got x1 only, not x2.

  • @veijolalli326
    @veijolalli326 День тому

    8*9^6=8*81^3=648*6 561=4 251 528

  • @RaajkamalYadla
    @RaajkamalYadla День тому

    Can't we do sum like this 3^3x = 27 We can write 27 as 3^3 3^3x = 3^3 The bases are same so We will get this equation 3x = 3 x=3/3 x=1 1 satisfy the equation Check 3^x = 27 Substitute the x value 3^3(1) = 27 3^3 = 27 27 = 27 L.H.S = R.H.S IS IT RIGHT SIR?

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    3^4^5+3^4^2 3^2^2^2^3+3^2^2^2 1^1^1^1^1+3^1^1^2 3^2 (x ➖ 3x+2).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    {0+0 ➖} ^1=1^1 (x ➖1 x+1).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    2^5^2^5vs9^11^1 1^1^2^1vs^3^2^1^1 (x ➖ 2x+1) .2^1vs3^1(x ➖ 3x+1).2^1<3^1. 10^10<9^11.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    {2+2 ➖ }+n^2+{n+n ➖ }={4+n^2+n^2}=4n^4 2^2n^2^2 2^1n^1^1 2n^1(n ➖ 2n+1).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    {3+3 ➖ }+x^2+{x+x ➖ }={6+x^2+x^2}=6x^4 3^3x^2^2 3^1x1^2 3x^2 (x ➖ 3x+2).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    {4+x^2}=4x^2 2^2x^2 1^1x^2 1x^2 (x ➖ 2x+1).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    6^{n+n ➖ }+{7+7 ➖ }=6^{n^2+14}=6^14n^2=84n^2 6^7^7n^2 6^3^4^3^4n^2 3^3^1^2^2^1^2^2n^2 3^1^1^1^1^1n^2 3n^2 ( n ➖ 3n+2). 7^{n+n ➖ }+{6+6 ➖}7^{n^2+12 }=7^12n^2 84n^2 7^6^6n^2 3^4^3^3^3^3n^2 1^2^2^1^1^3^1n^1 2^1^3^1^n 2^3^n (n ➖ 3n+2).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    2^(5) 2^(1) (m ➖ 2m+1). m^2^16 m^2^4^ m^2^2^2 m^1^1^2 m^1^2(m ➖ 2m+1).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    (k ➖ 3k+3). 27 3^3 (k ➖ 3k+3).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 День тому

    {10+10}=20 10^10 5^5^5^5 2^3^2^3^2^3^2^3 1^1^1^1^1^1^2^3 2^3 (n ➖ 3n+2).

  • @smb-zf9bd
    @smb-zf9bd 2 дні тому

    Go to 3:00 to skip useless filler. Nor sure why all these mathematicians are so verbose. LOL The thing is, anyone who watches one of these already knows about commutative, associative, exponents, logs, algebra, substitution, etc and do not require excruciating details. Just a suggestion.

  • @PitofDoom666
    @PitofDoom666 2 дні тому

    K=3

  • @sergkosh4833
    @sergkosh4833 2 дні тому

    2√n+√n=2 (2√n+√n)²=2² (2√n+√n)*(2√n+√n)=4 2√n*2√n*+2√n*√n+√n*2√n+√n*√n=4 4n+2n+2n+n=4 9n=4 n=4/9 🙂

  • @sy8146
    @sy8146 2 дні тому

    Thank you for explaining. I think the calculation in the video is complicated. I think the next method is easier (for calculating). √2 + √x = 2 ∴ √x = 2 - √2 ∴ x = (2 - √2)^2 = 2^2 - 4√2 + 2 = 6 - 4√2

  • @yakupbuyankara5903
    @yakupbuyankara5903 2 дні тому

    ((3×(3^(1/2))^(1/2)+((2×(3^(1/2))^(1/2)

  • @zoubirbahfir2654
    @zoubirbahfir2654 2 дні тому

    √x=2-√2 x= (2-√2)²= 6-4√2 Easily

  • @Rajan-s4j
    @Rajan-s4j 2 дні тому

    👍👍👍

  • @alexzuma2025
    @alexzuma2025 3 дні тому

    there is not only exponential growth but there is also tetrational growth, pentational growth, hexational growth, and so on...

  • @daniellerosalie2155
    @daniellerosalie2155 3 дні тому

    N=0, N=(1/9)

  • @juanjorgemercedesg.1868
    @juanjorgemercedesg.1868 3 дні тому

    Gringo lo hice de memoria n=0

  • @saka1029
    @saka1029 3 дні тому

    Thumbnail says "2ⁿ + 2ⁿ = 20"

    • @miticasb3210
      @miticasb3210 3 дні тому

      He is 😢. 2^n = 10; ....

    • @LuisMenechino
      @LuisMenechino День тому

      Yes. That confused me. I tried to solve like the thumbnail. 2^n + 2^n = 20 2 . 2^n = 20 2^n = 20/2 log2^n = log10 n . log2 = log10 n = log(2 . 5) / log2 n = (log2 + log5) / log2 n = (log2 / log2) + (log5 / log 2) n = 1 + log 5 2 The result wasn't the same. And I couldn't figure out why.

    • @miticasb3210
      @miticasb3210 16 годин тому

      ​@@LuisMenechinoRespect!

  • @yakupbuyankara5903
    @yakupbuyankara5903 3 дні тому

    X1=6-(4×2^(1/2)),X2=6+(4×2^(1/2))

  • @LorenzoPillon-ze1ih
    @LorenzoPillon-ze1ih 4 дні тому

    Nine Because: radical of potent 3 of 9, it is 3 And: 27^(9) = √3^(3) it will be easy. So do...: ^(3) × ^(3) is ^(9) (but under √ is ^(3)) And...: 3 ^(9) = 27 ^(9) will be 27 ^(9)/√3^(9) = 27/3 = 9 and √^(9) = ^(3). So...: 9/3^(3) make 1 And return all.

  • @veijolalli326
    @veijolalli326 4 дні тому

    6^(n+7)=7^(n+6) 6*6^(n+6)=7^(n+6) | let m=n+6 6^(m+1)=7^m (m+1)ln6=mln7 (m+1)/m=log_6(7) 1+1/m=log_6(7) 1/m=log_6(7)-1 m=1/(log_6(7)-1) | n=m-6 n=-6+1/(log_6(7)-1) n=5.623428915369726695883976610087 6^(n+7)=6 651 766 485.3983310054880097687784 7^(n+6)=6 651 766 485.3983310054880097687784

    • @veijolalli326
      @veijolalli326 4 дні тому

      n=5.6234289153697266958839766100865 6^(n+7)=6 651 766 485.3983310054880097687784 7^(n+6)=6 651 766 485,3983310054880097687784 ok - one more decimal😅

  • @오말말
    @오말말 4 дні тому

    아니 3의 1800승을 구해야 하는데 그건 안 구하고 갑자기 2로 바꼈나요?

  • @rasikapriya4ever
    @rasikapriya4ever 5 днів тому

    n = 0 or 1/9

  • @MJvdSande
    @MJvdSande 5 днів тому

    C'mon, filling a 9 min video with a 1st grade math problem and suggesting it's anything tricky.

  • @pspprabhat
    @pspprabhat 5 днів тому

    3n=_/n........n=1/9

  • @pspprabhat
    @pspprabhat 5 днів тому

    (7^×}`3=3^3 X=Log @7(3)

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 6 днів тому

    7^{3x+3x ➖}=7^6x^2=42x^2 6^7x^2 6^7^1x^2 2^3^1^1x^2 1^1^x^2 1x^2 (x ➖ 2x+1).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 6 днів тому

    2401 49^49 2^2^3^3^2^2^3^3 1^1^1^1^1^2^1^1 2^1 (k ➖ 2k+1).

  • @veijolalli326
    @veijolalli326 6 днів тому

    7^(3x)=27 => 343^x=27 => x=ln27/ln343 => x=0.56457503405357961380455016717491

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 6 днів тому

    (2^(3)=8 2^(1) (n ➖ 2n+1).

  • @philphil-c4c
    @philphil-c4c 6 днів тому

    good one

  • @yakupbuyankara5903
    @yakupbuyankara5903 6 днів тому

    N=1/9

  • @Secondary-s1s
    @Secondary-s1s 6 днів тому

    This could have been easily solved We know 1 to power anything is 1 so we can eliminate the 4^5 part Now we are left with 2^6^2 which is equal to 2^36 Now √2^36 is 2^18 which is 262144

  • @milktobo7418
    @milktobo7418 6 днів тому

    First 2.5 minutes are proof this creator likes to waste time and has never done an olympiad.

  • @tastyfood2020
    @tastyfood2020 6 днів тому

    This is also an answer K=e^-w(-ln5×e^(-4×ln5)). [Ans] Or simplify it,will be K=e^(-w(-ln5/5⁴) Well if you calculate this then the answer you will get which is ≈1.0025809314... ୧⁠(⁠^⁠ ⁠〰⁠ ⁠^⁠)⁠୨

  • @cyruschang1904
    @cyruschang1904 7 днів тому

    √n = m 2^m = 8^(m^2) = 2^(3m^2) m = 3m^2 m(3m - 1) = 0 m = 0, 1/3 n = 0, 1/√3

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 7 днів тому

    1/2^3 1/2^1 /2^1 (x ➖ 2x+1).

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 7 днів тому

    5^(4)=625 2^3^(2^2) 1^3^(2^1) 3^(2) (k ➖ 3k+2).

  • @jaggisaram4914
    @jaggisaram4914 7 днів тому

    1/9