BEAUTIFUL Floor Function Integral (With Zeta Function)

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 90

  • @maths_505
    @maths_505 5 місяців тому +33

    Yo nice!
    Subbed

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +10

      NO WAY! Thank you so much bro I'm the biggest fan.

  • @calebcorthell1900
    @calebcorthell1900 5 місяців тому +29

    Hell yeah brother

  • @franolich3
    @franolich3 5 місяців тому +17

    Alternatively split the integral into two straight away which makes the summations simpler:
    Integral[ x=1 to inf: (x-floor(x))/x^4 ]
    = Integral[ x=1 to inf: x^(-3) ] - Sum[ k=1 to inf: Integral[ x=k to k+1: k.x^(-4) ] ]
    = [ x=1 to inf: (-1/2)x^(-2) ] - Sum[ k=1 to inf: k.[ x=k to k+1: (-1/3)x^(-3) ] ]
    = 1/2 + (1/3).Sum[ k=1 to inf: k.(1/(k+1)^3 - 1/k^3) ]
    = 1/2 + (1/3).(Sum[ k=2 to inf: (k-1)/k^3 ] - Sum[ k=1 to inf: 1/k^2 ])
    Since k-1=0 for k=1:
    = 1/2 + (1/3).(Sum[ k=1 to inf: (k-1)/k^3 ] - Sum[ k=1 to inf: 1/k^2 ])
    = 1/2 + (1/3).(Sum[ k=1 to inf: 1/k^2 ] - Sum[ k=1 to inf: 1/k^3 ] - Sum[ k=1 to inf: 1/k^2 ])
    = 1/2 - (1/3).Sum[ k=1 to inf: k^3 ]
    = 1/2 - zeta(3)/3

  • @Walczyk
    @Walczyk 5 місяців тому +5

    hell yeah i’m glad i was recommended this

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Thanks so much! Really glad you enjoyed.

  • @sesmon8167
    @sesmon8167 5 місяців тому +18

    That’s fire bro!! But could you maybe add timestamps or something when you make those tiny mistakes? (Like forgetting 1/2 while integrating) We all make them but it really throws me off sometimes and I fail to concentrate on the real shit. Maybe it‘s a me problem but a small remark would be greatly appreciated!! Anyways Banger video :)

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +9

      Yeah absolutely, I'll do that in the future. Thanks so much for the feedback and I'm so glad you enjoyed watching!

  • @dinnertonightdinner7923
    @dinnertonightdinner7923 5 місяців тому +3

    Super clean, loved the format and the solution! Subbed

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Thank you so much! Glad you enjoyed.

  • @ryanmcmanus7273
    @ryanmcmanus7273 5 місяців тому +4

    The floor function truncates for positive inputs, but negatives are not a simple truncation. This is because the definition of the floor function is "the the largest integer less than or equal to x". (ex. floor(2.5)=2 , floor(3)=3 , floor(-1.5)=-2)

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Yeah absolutely, it works differently for negatives so that the ceiling of x is always greater than the floor of x. Thanks for the comment!

  • @liamturman
    @liamturman 5 місяців тому +4

    Sick integral!

    • @archangecamilien1879
      @archangecamilien1879 5 місяців тому

      I suppose it could be split up into two integrals, the sum of two integrals, the second will have the floor function, that can be split into an infinite series over integer-length intervals, etc...an integral over each interval...

  • @ronbannon
    @ronbannon 5 місяців тому +2

    Great job! I will share with my students!

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Great! Really glad you enjoyed.

  • @Ryan-mw4zv
    @Ryan-mw4zv Місяць тому +1

    it is beautiful!!!

    • @OscgrMaths
      @OscgrMaths  Місяць тому

      @@Ryan-mw4zv thank you!!!!

  • @somerandomguy7539
    @somerandomguy7539 5 місяців тому +6

    Banging integral bro🔥

  • @yaronbracha4923
    @yaronbracha4923 5 місяців тому +1

    Awesome explanation

  • @theseusswore
    @theseusswore 5 місяців тому +3

    hell mf yeah that is a beaautiful integral. so satisfying. just the right length incredibly simple

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +2

      Right!! So nice how once you make that first jump it all just simplifies in the perfect way.

    • @theseusswore
      @theseusswore 5 місяців тому +2

      @@OscgrMaths i so, so love those little moments in higher math. the "leaps of faith", a name very dramatic but I feel like it's fully deserving of that moniker because as you said, it just clicks into place in the end. the elegance of maths astounded me from day one of my life and has not stopped since

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +2

      @@theseusswore Exactly the same for me - that's why I wanted to start this channel in the first place! So glad there's such a great community for maths online, I feel really lucky.

    • @theseusswore
      @theseusswore 5 місяців тому +1

      @@OscgrMaths I've always wanted to be part of math communities but the fact that I'm too awkward to try and get into groups and just an overall lack of groups which would be willing to accept people with intermediate math knowledge is why im not. that's why it's so beautiful when I find channels like yours and others with passion for the subject oozing out of each video. 3b1b is my all-time favorite, the community is absolutely magnificent

  • @rendoesmath
    @rendoesmath 5 місяців тому +2

    Just found your channel. Gold content

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Thanks so much for the comment! I'm so glad you like it.

  • @worldnotworld
    @worldnotworld 5 місяців тому +1

    Very nice! I love it when the "clunkiness" of truncation somehow yields elegant results. (You might have pointed out to those not familiar with the floor function that _x-floor(x)_ truncates left of the decimal point, i.e. eliminates the integer part; most people will notice, but it's a fun fact!)

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Yeah I probably should have clarified that... Glad you enjoyed anyway!

  • @bjornfeuerbacher5514
    @bjornfeuerbacher5514 5 місяців тому +4

    Nice one. :) I repeated the calculation for an arbitrary natural exponent m instead of the exponent 4 in the denominator, and after some really nice cancellations, I got the quite simple result 1/(m-2) - zeta(m-1)/(m-1), completely agreeing with your result for m = 4.

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +2

      That's such a great idea - generalising problems like this is always so fun. I'll try and work it through myself as well. Thanks for the comment!

  • @SanjayRoshan-c7i
    @SanjayRoshan-c7i 5 місяців тому +1

    Amazing explanation!👍👍👍

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +1

      Thanks so much! Im glad you enjoyed.

  • @redroach401
    @redroach401 5 місяців тому +3

    Great job this was very cool integral. Can you make a video on solving the zeta function of 3?

  • @roberthayter157
    @roberthayter157 5 місяців тому +1

    Brilliant. Thanks.

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      No problem at all - glad you enjoyed!

  • @CMYwitz7545
    @CMYwitz7545 5 місяців тому +2

    @OscgrMaths Amazing content 🔥 .....showed up on M's feed :)

  • @timofeysobolev7498
    @timofeysobolev7498 5 місяців тому +1

    Nice video, liked iRL, liked in video, subbed, saved

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Great! Thanks so much, really glad you enjoyed it.

  • @zathrasyes1287
    @zathrasyes1287 5 місяців тому +2

    Nice one. Thx!

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      No problem! Glad you enjoyed.

  • @jamesknapp64
    @jamesknapp64 5 місяців тому +1

    Nice

  • @m1che268
    @m1che268 5 місяців тому +1

    Very nice

  • @theelk801
    @theelk801 3 місяці тому +1

    small nitpick-apéry’s constant isn’t named after him because he discovered it, it’s named after him because he was the first to prove that it was irrational

    • @OscgrMaths
      @OscgrMaths  3 місяці тому +1

      @@theelk801 Ah thank you!

  • @KillToGame
    @KillToGame 5 місяців тому +2

    this video cured my stupidity.
    i know know yet another thing without being able to explain it.

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      You'll get there! If you have any questions then feel free to ask.

  • @michaelwojcik2597
    @michaelwojcik2597 5 місяців тому +1

    Hey man, great video, just wanted to add:
    Would we not need to account for the discontinuities that occur on each segment of the floor function? I.e. for the integral from 1 to 2 of the floor function, you’d need to write it as an improper integral with an upper bound approach two in the limit? Ik this doesn’t affect the result, just an important step

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +1

      You're absolutely right, I probably should have done that in order to be more rigorous. Really glad you enjoyed the video! Next time I'll definitely mention things like that if they come up.

  • @aadi.-.
    @aadi.-. 5 місяців тому +1

    nice

  • @Serghey_83
    @Serghey_83 5 місяців тому +1

    ❤❤❤

  • @drdca8263
    @drdca8263 5 місяців тому +2

    5:38 : where’d the 2 go? Or, why was there a 2 in the denominator to cancel with?
    Edit: 6:39 oh, ok

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Sorry my bad for forgetting it - next time i'll try and use time stamps or edit it out.

  • @riccardofroz
    @riccardofroz 5 місяців тому +1

    Rewrite problem as
    sum n=1 to inf (Integ n to n+1 (x-n)dx/x^4)
    Rewrite as:
    sum n=1 to inf (Integ n to n+1 (1/x^3-n/x^4)dx)
    Integrate
    sum n=1 to inf (n/(3x^3)-1/(2x^2)) | n to n+1)
    replace x with n+1 and n and subtract the first with the second:
    sum n=1 to inf n/(3(n+1)^3)-1/(2(n+1)^2)-n/(3n^3)+1/(2n^2))
    sum n=1 to inf 2n/(6(n+1)^3)-3/(6(n+1)^2)-2/(6n^2)+3/(6n^2))
    sum n=1 to inf 1/(6n^2))+2n/(6(n+1)^3)-3/(6(n+1)^2)
    sum n=1 to inf 1/(6n^2))+(2n+2-2)/(6(n+1)^3)-3/(6(n+1)^2)
    sum n=1 to inf 1/(6n^2))+2(n+1)/(6(n+1)^3)-2/(6(n+1)^3)-3/(6(n+1)^2)
    sum n=1 to inf 1/(6n^2))+2/(6(n+1)^2)-2/(6(n+1)^3)-3/(6(n+1)^2)
    sum n=1 to inf 1/(6n^2))-2/(6(n+1)^3)-1/(6(n+1)^2)
    the terms 1/(6(n+1)^2) and 1/(6n^2)) will cancel each other out with the exception of 1/(6n^2)) when n=1 so:
    1/6 -sum n=1 to inf 1/(3(n+1)^3)
    replace sum with zeta function:
    1/6 +(1-z(3))/3

  • @nicolascamargo8339
    @nicolascamargo8339 5 місяців тому +3

    Genial

  • @adityathanki9098
    @adityathanki9098 5 місяців тому +3

    bro i came for the math but you're beautiful no diddy

  • @IamRigour
    @IamRigour 5 місяців тому +1

    new sub 😊

  • @xebby9
    @xebby9 5 місяців тому +1

    subbed

  • @gregoriousmaths266
    @gregoriousmaths266 5 місяців тому +1

    This integral looks familiar from somewhere.... 🤔

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Now you can cheat and see the solution 😁!

    • @gregoriousmaths266
      @gregoriousmaths266 5 місяців тому +1

      @@OscgrMaths but then I won’t get three stars ☹️(seriously tho that was actually a very satisfying solution in the end- that first step was genius)

  • @rasmodii
    @rasmodii 5 місяців тому +1

    I tried to do the same but with x³ in the denominator, but I ended up with Σ(n=1,∞)(1/(2n³+4n²+2n)), and when I computed this on a calculator it seemed to equal 1-(π²/12), do you know how to evaluate this sum ?

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Yes I just did it now - factorise the bottom part and then use partial fractions decomposition. It should split into three fractions. From there you can rearrange and manipulate the sums. If you need any more hints just message!

    • @rasmodii
      @rasmodii 5 місяців тому

      @@OscgrMaths the problem I have is that I don't know how to not end up with the harmonic series, since the degree of the denominator is odd. I can easily isolate 1/(n+1)² or 1/n² and do a substitution but then I'd have another sum that doesn't converge (namely 1/n or 1/n+1)

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      @@rasmodii You should end up with by partial fraction decomposition
      1/2n -1/2(n+1) - 1/2(n+1)^2
      These first two harmonic series will cancel out for all terms other than the first
      1/2 + 1/4 + 1/6 ... - 1/4 - 1/6 ...
      so we are left with just 1/2. We can use the trick of substitution that was used in the video to show that 1/(n+1)^2 is the same as pi^2/6-1, so
      = 1/2 - 1/2(pi^2/6 -1)
      =1-pi^2/12

    • @rasmodii
      @rasmodii 5 місяців тому +1

      @@OscgrMaths I'm incredibly silly I didn't realize it had to have the form A/n+B/(n+1)+C/(n+1)², thank you so much and keep up the amazing content!

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +1

      @@rasmodii Ah no problem!!! Easy mistake to make. Glad you're enjoying - always feel free to comment!

  • @chixenlegjo
    @chixenlegjo 5 місяців тому +1

    Wouldn’t a u-sub with u=-ln(x) work quickly?

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Hey, that sounds really interesting but I can't work out how to start it - what were were your steps?

  • @rayyanmirza419
    @rayyanmirza419 5 місяців тому +1

    question :
    does x - floor(x) >= 0 ?? for all x

    • @redpepper74
      @redpepper74 5 місяців тому +1

      Yep, it’s pretty easy to see if you graph it. It looks like a sawtooth wave that stays between y=0 and y=1

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +4

      You're absolutely right, since x >= floor(x), by subtracting floor(x) on both sides we get what you said:
      x-floor(x)>=0
      But also, correct me if i'm wrong, I think we can also bound it from above as well since the greatest difference between x and floor x would be if x were approaching the integer above floor(x)
      (eg... if x=3.999999 and floor(x) =3 )
      Given that this is a difference of just below 1, this means that
      1>x-floor(x)>=0 for all x

  • @debdassarkar4421
    @debdassarkar4421 5 місяців тому +2

    Just write s+1 in place of 4 and solve, you basically get an alternate definition of the zeta function, but with no actual usefulness I guess😭😭😭😭😭

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +1

      That is interesting!! Always good to have multiple ways to write important functions like the zeta function. Great idea.

    • @debdassarkar4421
      @debdassarkar4421 5 місяців тому +2

      @@OscgrMaths Thanks😇😇

  • @nye4941
    @nye4941 5 місяців тому +1

    i like your rubber/pen holder

  • @gjproductions9337
    @gjproductions9337 5 місяців тому +1

    Is floor(2)=1?

    • @OscgrMaths
      @OscgrMaths  5 місяців тому

      Great question, floor(2)=2 because it's at this point that we take a step up to the next integer!

  • @anonymous12574
    @anonymous12574 Місяць тому +1

    Smallest integer functions lol

  • @__-1234
    @__-1234 5 місяців тому +3

    Nice, i have another one, similar but more challenging for you. I= int from 0 to 1 ( x * floor(1/x) ) dx. Good luck.

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +1

      I'll take a look at this later! Thanks so much.

    • @__-1234
      @__-1234 5 місяців тому

      @@OscgrMaths I give you the final result, it is pi^2/12
      It is a bit more challenging than yours because of the inverse, but same principle otherwise, you have to chop it into pieces.

  • @MrUserasd
    @MrUserasd 5 місяців тому +1

    2:35 video start

  • @ayushrudra8600
    @ayushrudra8600 5 місяців тому +2

    i simplified into two integrals first

    • @OscgrMaths
      @OscgrMaths  5 місяців тому +1

      Yeah that's also a great way to do it - probably makes things easier in the long run!