Lec 23: Flux; normal form of Green's theorem | MIT 18.02 Multivariable Calculus, Fall 2007

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 44

  • @yilinma4079
    @yilinma4079 7 років тому +32

    These are too good. I spent days reading abstract definitions and formal explanations in books to understand concepts this professor explains so vividly and creatively with 10 seconds! Thank you!

  • @audreydaleski1067
    @audreydaleski1067 2 роки тому +4

    This fellow makes things crystal clear.

  • @alexhudson502
    @alexhudson502 2 роки тому +7

    Lecture 1: Dot Product
    Lecture 2: Determinants
    Lecture 3: Matrices
    Lecture 4: Square Systems
    Lecture 5: Parametric Equations
    Lecture 6: Kepler's Second Law
    Lecture 7: Exam Review (goes over practice exam 1a at 24 min 40 seconds)
    Lecture 8: Partial Derivatives
    Lecture 9: Max-Min and Least Squares
    Lecture 10: Second Derivative Test
    Lecture 11: Chain Rule
    Lecture 12: Gradient
    Lecture 13: Lagrange Multipliers
    Lecture 14: Non-Independent Variables
    Lecture 15: Partial Differential Equations
    Lecture 16: Double Integrals
    Lecture 17: Polar Coordinates
    Lecture 18: Change of Variables
    Lecture 19: Vector Fields
    Lecture 20: Path Independence
    Lecture 21: Gradient Fields and Curl Of Vector Fields
    Lecture 22: Green's Theorem
    Lecture 23: Flux
    Lecture 24: Simply Connected Regions
    Lecture 25: Triple Integrals
    Lecture 26: Spherical Coordinates
    Lecture 27: Vector Fields in 3D
    Lecture 28: Divergence Theorem
    Lecture 29: Divergence Theorem (cont.)
    Lecture 30: Line Integrals
    Lecture 31: Stokes' Theorem
    Lecture 32: Stokes' Theorem (cont.)
    Lecture 33: Maxwell's Equations
    Lecture 34: Final Review
    Lecture 35: Final Review (cont.)

  • @danieljulian4676
    @danieljulian4676 2 роки тому +3

    30:00, the way to remember it is that the work is a straightforward dot product of F with , M goes with x and N goes with y and we add, and the flux is a dot product of F with the same vector rotated pi/2 so N goes with x and a minus sign with few choices left for M. Auroux missed a nice opportunity at the beginning to clarify the sign convention for flux by foreshadowing the result for closed curves with + being from the inside, out. I'm not faulting anyone, I couldn't give a lecture on this and keep possession of both my hands when erasing blackboards operated by hazardous machines. If he loses his hands, he'll never erase anything again. Be careful out there, Denis, we don't want to lose a great teacher.

  • @Arycke
    @Arycke 15 років тому +36

    29:48 famous Auroux speed erasing :-)

    • @paulmoore7964
      @paulmoore7964 4 роки тому +3

      never breaks a smile, ever over this

  • @downwithreactionaries9031
    @downwithreactionaries9031 6 місяців тому

    I learned Flux for years already -- only this is my first time really understand how it is defined and works.

  • @JinxiLiu-e2b
    @JinxiLiu-e2b 21 день тому

    This is so good. shocked, so clear, so clear, so easy

  • @itsMeAsh0304
    @itsMeAsh0304 2 місяці тому

    Studying Mathematics for knowledge. And I found the best resource!

  • @Antonio_Serdar
    @Antonio_Serdar 3 роки тому +4

    I never thought about the fact that Gauss' theorem could be expressed in the plane, although it is pretty obvious.
    Same like Green's is just a form of Stokes' in the plane.

    • @sarmadsultan7981
      @sarmadsultan7981 3 роки тому

      i flexed in my class telling this to my physics teacher 🥲

    • @benjamindavid7371
      @benjamindavid7371 Рік тому

      All the vector calculus integral formulas are unified in a general Stokes Formula. Maybe check out differential forms if you are interested.

  • @twominutecollege4249
    @twominutecollege4249 7 років тому +6

    25:11 amazing

  • @SteamPunkLV
    @SteamPunkLV 6 років тому +4

    Funny and very intuitive lecture

  • @imegatrone
    @imegatrone 13 років тому +2

    I Really Like The Video Flux; normal form of Green's theorem From Your

  • @madelcamp
    @madelcamp 15 років тому +9

    it's because of his skill at erasing berofe the next blackboard cover it... just funny staff

  • @huanyanqi
    @huanyanqi 14 років тому +5

    Why did they clap when we was moving the line through the vector field at around 10 mins? =D

  • @twominutecollege4249
    @twominutecollege4249 7 років тому +3

    25:11 outrageous

  • @grasshopperweb
    @grasshopperweb 3 роки тому +2

    My textbook covers flux in 10 sentences. Thanks for making this public so it can bolster this kind of trash textbook.

  • @NSBeverything
    @NSBeverything 6 років тому +1

    at around 14:04, regarding flux what if curve is also moving? how to tackle that?

    • @endogeneticgenetics
      @endogeneticgenetics 5 років тому +1

      movement is relative. It doesn't matter whether the curve or the gradient is what's moving. If you mean that the gradient is changing then you would add another dimension to describe the change and calculate flux along a surface instead of a line (the surface being the line drawn out along a third dimension representing time, along which the gradient varies appropriately to describe the changing position of the gradient and curve relative to each other)

    • @harshavardhan9399
      @harshavardhan9399 3 роки тому +1

      then the flux also changes with time

  • @not_amanullah
    @not_amanullah 5 місяців тому

    Thanks ❤🤍

  • @behnamasid
    @behnamasid 13 років тому +1

    @huanyanqi Because he explained it well.

  • @not_amanullah
    @not_amanullah 5 місяців тому

    This is helpful ❤️🤍

  • @TaigaZzz
    @TaigaZzz 2 роки тому

    ty for lectures

  • @pratik_shrestha
    @pratik_shrestha 6 років тому +1

    Why doesn't he use symbols for divergence and curls?

  • @oolongtea0922
    @oolongtea0922 14 років тому +2

    I like this professor

    • @Ren90fig
      @Ren90fig 5 років тому

      Where you at now?

    • @denden4455
      @denden4455 3 роки тому

      Where you at now?

    • @daniel_liu_it
      @daniel_liu_it 2 роки тому

      11年前就翻墙听这个,有趣

  • @봄여율-u9f
    @봄여율-u9f Рік тому

    22:33

  • @mrtumnus0
    @mrtumnus0 15 років тому +1

    Why, because they'are not finished with writiing it down on their papers ...

  • @saralin727
    @saralin727 9 років тому +3

    why did people cheer when he wiped the upper blackboards??

    • @swaggerchegger98
      @swaggerchegger98 9 років тому +34

      The race between the teacher's erasing skills and the auto-dropdown chalkboard is somehow amusing. It's a running gag, starting from lecture 1.

    • @saralin727
      @saralin727 9 років тому +3

      oh i see, thanks!

  • @shakesbeer00
    @shakesbeer00 12 років тому +1

    I cannot post. hmmm

  • @khayliangtan4051
    @khayliangtan4051 2 роки тому

    The notes made no sense. This lecture made it seem so simple

    • @MrNiceFromUkraine
      @MrNiceFromUkraine 2 роки тому

      Your own notes of this great lecture make sense. Otherwise, you don't learn

  • @fateplus1
    @fateplus1 12 років тому +9

    never realized how immature MIT students were....

    • @kettle351
      @kettle351 6 років тому +55

      they have a sense of humour and their applause comes out of their respect and adoration for their professor.