I haven't viewed the full solution but ... cos x = i = e^i(π/2 + 2nπ) cos²x + sin²x = 1 (even for complex numbers) => sin x = ±√2 e^(ix)=cos x + i sin x = i ± i√2 = i(1 ± √2) = e^i(π/2 + 2nπ)(1 ± √2) then take ln ix=i(π/2 + 2nπ)+ln(1 ± √2) then times -i x=π/2 + 2nπ - i ln(1 ± √2)
At 7:55, you lost the plus-or-minus in front of sqrt(2). The minus sign leads to a second set of solutions, x = -pi/2 + 2*pi*n + ln(1+sqrt(2))*i. These solutions are the opposites of the ones you already listed, which fits with cosine being an even function. (In simplifying, it helps to note that 1-sqrt(2) = -1/(1+sqrt(2).)
Мнимая единица подразумевает, что квадрат отношения сторон будет равен -1. Для этого одна из сторон должна иметь комплексную длину. Косинус 1 или -1 у углов, где катет равен гипотенузе - 0°, 180°, 360°. Соответственно, косинус будет равен i, если катет iy, а гипотенуза y. Тогда iy/y=i. Второй случай, y/iy=1/i, не подходит. Для 0° и 360° b=c=y. Для 180° b=-y, c=y. b/c=-iy/y=-i=i³=1/i - возвращаемся к неприемлемому варианту. В случае, если b=-y, c=iy, cos(x)=1/(-i)=i⁴/i³=i. Таким образом, это будут некие комплексные углы, соответствующие 0° и 360° в целых числах, а для 180° комплексной должна быть гипотенуза.
Не увлекаюсь российской эстрадой и понятия не имею о ком ты говоришь. Жаль, что ты все так "в штыки" воспринял. Мог бы потратить 5 минут и объяснить то, что написал и все были бы довольны.
In Electrical Engineering we don't have the cosine and sine of waves having imaginary phase results but rather real angular actual phase. I think Physics problems also. Unless I see a real world application where we aren't using hyperbolic function solutions on e^u where u is not imaginary as real phase change calculations I'll suspend judgement of this mathematics as just exercise of the imaginary beyond. 🤯😂🤣
@@SyberMath I assume you usually cut coughing on montage, but I guess you were understandably sleepy to remember it this time. Was the coughing just over dust/dryness or..? Your health is important to us)
This class is absolutely awe-inspiring! Your teaching style is incredibly captivating, making it impossible not to soak up knowledge.
Wow, thank you! 🤩
X=arccos(i). 🎉😂
Xddd
That's what WA says 😁😜
Ingeniously)))
I think, x = arccos[e^(iπ/2)]😅
@@SyberMath would replacing sinx with cos(pi/2-x) since sine and cosine are complementary angles
I haven't viewed the full solution but ...
cos x = i = e^i(π/2 + 2nπ)
cos²x + sin²x = 1 (even for complex numbers) => sin x = ±√2
e^(ix)=cos x + i sin x = i ± i√2 = i(1 ± √2) = e^i(π/2 + 2nπ)(1 ± √2) then take ln
ix=i(π/2 + 2nπ)+ln(1 ± √2) then times -i
x=π/2 + 2nπ - i ln(1 ± √2)
Thank you for the video!
My pleasure! Thank you! 🤩
Alternatively, if cosx=i then by Pythagoras we have sinx=SQRT{2} and then use Euler's identity....goes very quick
Rewrite cosine with complex exponents. Then make quadratic equation relative to e^ix and solve.
hmm
@@SyberMath (e^ix + e^-ix) / 2 = i
(e^2ix + 1) / 2 = i * e^ix
e^2ix + 1 = 2i*e^ix
(e^ix)^2 - 2i(e^ix) + 1 = 0 (its quadratic relative to e^ix)
(e^ix - i)^2 + 1 + 1 = 0
e^ix = i +- sqrt(-2)
On your video all the rest)
Also -pi/2+2npi+ln(1+sqrt(2))
Cos x= e^(pi/2 * i) = cos pi/2 + sin pi/2 = pi/2 + 2n pi
At 7:55, you lost the plus-or-minus in front of sqrt(2). The minus sign leads to a second set of solutions, x = -pi/2 + 2*pi*n + ln(1+sqrt(2))*i.
These solutions are the opposites of the ones you already listed, which fits with cosine being an even function. (In simplifying, it helps to note that 1-sqrt(2) = -1/(1+sqrt(2).)
I just did one of them. I think I said that
Yo amo todas las ecuaciones con imaginaros, saludos desde Colombia, i love tahat your videos ❤❤
Thank you!!!
haven't you forgotten to provide the solutions for x when t=(1-sqrt(2))*I?
why couln't we write it as:
x=-i(ln((1+√2)i))?
If you like your angles in degrees, that would be (90+360n-(180/π)ln(1+√2)i)°
Hyperbolic trigonometry!
But we have 2i before you even started.
I like how rigorous you approach the problem.
Мнимая единица подразумевает, что квадрат отношения сторон будет равен -1. Для этого одна из сторон должна иметь комплексную длину. Косинус 1 или -1 у углов, где катет равен гипотенузе - 0°, 180°, 360°. Соответственно, косинус будет равен i, если катет iy, а гипотенуза y. Тогда iy/y=i. Второй случай, y/iy=1/i, не подходит. Для 0° и 360° b=c=y. Для 180° b=-y, c=y. b/c=-iy/y=-i=i³=1/i - возвращаемся к неприемлемому варианту. В случае, если b=-y, c=iy, cos(x)=1/(-i)=i⁴/i³=i. Таким образом, это будут некие комплексные углы, соответствующие 0° и 360° в целых числах, а для 180° комплексной должна быть гипотенуза.
Ты такую портянку непонятную накатал))) Реально ничерта не понятно. Может по-проще переформулируешь свои размышления?)))
@@s1ng23m4n попроще это тебе на концерт Милохина, в другую дверь. )
Не увлекаюсь российской эстрадой и понятия не имею о ком ты говоришь. Жаль, что ты все так "в штыки" воспринял. Мог бы потратить 5 минут и объяснить то, что написал и все были бы довольны.
Нагуглил милохина. Видел только его клип с Басковым. Вполне годно. Но остальное творчество наркомана-сироты желания смотреть нет)
@@s1ng23m4n я недоволен. Этого достаточно. Как мудро подметил Кирилл Юрьевич Лавров, если хоть один не согласен - консенсуса нет. Так что упс.
Is i the only number where the character is discontinuous?
In Electrical Engineering we don't have the cosine and sine of waves having imaginary phase results but rather real angular actual phase. I think Physics problems also. Unless I see a real world application where we aren't using hyperbolic function solutions on e^u where u is not imaginary as real phase change calculations I'll suspend judgement of this mathematics as just exercise of the imaginary beyond. 🤯😂🤣
I need to study. I didn't get it :(
Hi. It will be nice if you consider studying the following function: f(x)+f(T-x)=1 with x in [0,T]
Are You Alright Sir You seem a little sick?
Thanks for asking. I sounded weird because of recording 5-6 videos and realizing that the mic was turned off, this was my attempt around 3 am 😜
@@SyberMath I assume you usually cut coughing on montage, but I guess you were understandably sleepy to remember it this time. Was the coughing just over dust/dryness or..? Your health is important to us)
I stopped at e^ix = (1+-sqrt(2))i 🥴
I stopped at cosx=i 💀💀
@@marianne-wt8it I stopped at 'An interesting trigonometric equation'
I would stop at youtube.com but something kept me going...😜
You seem to be sick. Please look after yourself.
Thank you! It's more like exhaustion. I don't know if you heard me saying I forgot to turn on the mic when I was recording 5 videos