An Interesting Trigonometric Equation

Поділитися
Вставка
  • Опубліковано 20 гру 2024

КОМЕНТАРІ • 28

  • @yoav613
    @yoav613 Рік тому +9

    Nice. You forgot the other root -(2-sqrt3) which after taking ln will give you ln(-1) +ln(2-sqrt3) which at the end gives you (2n+1)pi+ i ln(2+sqrt3) so you can combine this and what you got ( 2npi+i ln(2+sqrt3)) to npi + i ln(2+sqrt3) as wolfram.

    • @ashwinsenapati3358
      @ashwinsenapati3358 Рік тому

      But if we go this way..
      Cos X=2 sinx=√3i
      e^ix= 2 + i√3i
      Or e^ix=( 2-√ 3i).e^i2npi
      x= 2npi- ln(2-√3i)
      x= 2npi + ln(2+√3i)
      Can you please point out where did i miss npi in this way?

    • @SunilMeena-do7xn
      @SunilMeena-do7xn Рік тому

      @@ashwinsenapati3358 2+i√3i = (2-√3) There should not be any i left.

    • @ashwinsenapati3358
      @ashwinsenapati3358 Рік тому

      @@SunilMeena-do7xn oh i forgot to remove that i but still I'm getting 2npi only through this process.. where exactly am I missing out?

    • @SunilMeena-do7xn
      @SunilMeena-do7xn Рік тому

      @@ashwinsenapati3358 this factorisation in sinX and cosX is not unique. Take cosX=-2, sinX=-√3i. Then e^ix=(2-√3).(-1).e^i2nPI. Since -1=e^iPI. We gte e^i(2n+1)PI.

    • @ashwinsenapati3358
      @ashwinsenapati3358 Рік тому

      @@SunilMeena-do7xnok,so in this way, I'm missing out solutions right?

  • @seanfraser3125
    @seanfraser3125 Рік тому +3

    The answer to the question at the end of the video is the other solution t2 of the quadratic.
    Similarly to how we handle t1, we write t2 in polar form and solve for x:
    e^ix = -(2-sqrt(3))
    = (2-sqrt(3))*e^(2n+1)pi*i
    Taking the log of both sides gives
    ix = ln(2-sqrt(3)) + (2n+1)pi*i
    Thus x = (2n+1)pi + i*ln(2+sqrt(3))
    We could just append this to the set of solutions we found before, but let’s be a bit more clever about it. Notice that the two solutions together give us the following pieces of information:
    1. The imaginary part is ln(2+sqrt(3))
    2. The real part is either an even integer multiple of pi (from t1) or an odd integer multiple of pi (from t2). Notice that this just means any integer multiple of pi.
    So the final set of solutions is
    x = n*pi + i*ln(2+sqrt(3))

  • @allanmarder456
    @allanmarder456 Рік тому +1

    Old wine in new bottles. I think you gave this before, but in a different form.
    If tan(x) = sqrt(3)/2*i then 1+tan^2(x) = 1- 3/4 =1/4 =sec^2(x) so sec(x)=+/ 1/2 and cos(x) = +- 2.
    About 4 months ago you gave the problem cos(x)=2. I still like your solution.

  • @ManjulaMathew-wb3zn
    @ManjulaMathew-wb3zn 8 місяців тому

    You determined value of x for positive value of t. The negative value of t gives
    e^ix = (2- sqrt3)e^(PI+2kPI)i
    x=(2k+1)PI + ln(2+sqrt3)
    This solution covers all odd integer multiples of PI and the other solution covers even multiples. When combined the answer becomes
    x=nPI + ln(2+sqrt3) which confirms WA result.
    Since tangent repeats every integer multiple of PI this answer makes sense.

    • @ManjulaMathew-wb3zn
      @ManjulaMathew-wb3zn 8 місяців тому

      Another potential method is to calculate the principal value of x
      If tanx = tana where -PI/2

  • @Mehrdad_Basiry-fj4rl
    @Mehrdad_Basiry-fj4rl Рік тому

    Fantastic question...💯💯💯.

  • @mathisnotforthefaintofheart

    This equation is one branch of the equation (secX)^2=1/4 and then you get all the solutions

  • @alextang4688
    @alextang4688 Рік тому +1

    It turns up to the definition of tangent function. What domin and range it should be? 😏😏😏😏😏😏

  • @stevenlitvintchouk3131
    @stevenlitvintchouk3131 Рік тому

    Nice! But if you use hyperbolic functions, it eliminates some of the first steps in your calculations. Use the identity: tan(x + nπ) = -i * tanh(ix). Substituting, we get tanh(ix) = sqrt(3) / 2. The definition of tanh(ix) = (e^(ix) - e^(-ix) ) / (e^(ix) = e^(-ix) ), and the rest of this solution proceeds similar to yours.

  • @kumarsumit9448
    @kumarsumit9448 Рік тому

    Sir could you please make a proper video on finding out arc length (curve length) of sin function between 0 and 2π

  • @mcwulf25
    @mcwulf25 Рік тому

    I put tanx = sinx/cosx and cross multiply to get
    2sinx = i✓3 cosx
    Multiply by -i and put on LHS
    ✓3 cosx - 2i sinx = 0
    Then convering to Euler didn't really help as the modulus is √7 but the RHS is zero.
    I think there must be something about the tan identity that I generalised.

  • @xenumi
    @xenumi Рік тому

    I didn't like having e's in both the numerator and denominator so I made a triangle with complex sides and used Pythagoras to get cos(x) = 2. Put in exponential form (Euler) and solve to get same x.

  • @user-lu6yg3vk9z
    @user-lu6yg3vk9z Рік тому

    Try this
    Evaluate Cos(10 degree)

  • @trojanleo123
    @trojanleo123 Місяць тому

    x = πn - i*ln(2 - √3)

  • @masoudhabibi700
    @masoudhabibi700 Рік тому

    Thanks for an other video master...

  • @user-lu6yg3vk9z
    @user-lu6yg3vk9z Рік тому

    Try these problems
    Sec(x)=2i
    Cot(x)=2i

  • @geoffreyparfitt7003
    @geoffreyparfitt7003 Рік тому

    Can't help thinking that being able to do some maths doesn't make it meaningful. Tan is a function that turns an angle into a ratio.

  • @seegeeaye
    @seegeeaye Рік тому

    I did it with a different method ua-cam.com/video/oZxcOMu1v9c/v-deo.html

  • @beano9503
    @beano9503 Рік тому

    FIRST