cos(x)=x

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ •

  • @garvett6660
    @garvett6660 3 роки тому +453

    *You either die a mathematician, or prove long enough to see yourself become an engineer*

  • @kingbeauregard
    @kingbeauregard 3 роки тому +170

    "I just solved sin(x) = x, how much harder could the cosine be?"
    90 minutes and much blood later ...

    • @DrDeuteron
      @DrDeuteron 3 роки тому +2

      try:
      sin(x) = sqrt(1-x^2)

    • @livedandletdie
      @livedandletdie 3 роки тому +1

      0

    • @Drk950
      @Drk950 3 роки тому

      Newton Raphson was More practical, I think...

    • @fisher9943
      @fisher9943 3 роки тому +1

      @@DrDeuteron it's the same number as in above video

    • @holyshit922
      @holyshit922 3 роки тому +1

      Did you get more solutions than obvious one x = 0

  • @haider1946
    @haider1946 3 роки тому +117

    Cos(x) = x always holds true by the fundamental theorem of engineering.

    • @Lamiranta
      @Lamiranta 3 роки тому +12

      Actually, it's cos(x)=1

    • @scottwhitman9868
      @scottwhitman9868 3 роки тому +6

      @@Lamiranta and x=1 for very x values of 1

    • @scottwhitman9868
      @scottwhitman9868 3 роки тому +1

      And by the fundemental theorem of engineering this becomes simply x=1

    • @aadhiimrana3771
      @aadhiimrana3771 2 роки тому

      Wtf bro, that's sin x =x and cosx =1

  • @sirtthetea1904
    @sirtthetea1904 3 роки тому +257

    Dude, you are slowly becoming a villain.

  • @dylank6191
    @dylank6191 3 роки тому +165

    Easy, since sin(x) = x it holds that cos(x) = (sin(x))' = (x)' = 1, so we just let x = 1

    • @Shreyas_Jaiswal
      @Shreyas_Jaiswal 3 роки тому +5

      Differentiation goes brr.

    • @glegle1016
      @glegle1016 3 роки тому +1

      What??

    • @guigazalu
      @guigazalu 3 роки тому +4

      Actually, as cos² x + sen² x = 1, and sen x = x, we have: cos² x + x² = 1
      So cos x = sqrt{1 - x²} = x.
      As 1 gives 0, and 0 gives 1, we go in the middle, and 0,5 should give you 0,5.

    • @CaoNiMaBi
      @CaoNiMaBi 3 роки тому +4

      why would sin(x) = x?

    • @guigazalu
      @guigazalu 3 роки тому +5

      @@CaoNiMaBi
      sin(x) = SUM in n with (n in Naturals) of (- x)^(2n + 1) / (2n + 1)!
      = x - x³ / 3! + x^5 / 5! + ...
      So, when x is small (|x| < 1), every other thing goes to 0 faster than x itself.
      This way, with the Fundamental Theorem of Engineering, sin(x) = x.

  • @blackhole3407
    @blackhole3407 3 роки тому +18

    2:43 let function f be a n a l.

  • @nikhilnagaria2672
    @nikhilnagaria2672 3 роки тому +137

    cos(x)=1 for smol enough x and now if we check, x=1 is sufficiently smol, compared to for example 69^420, and thus the solution is x=1.

  • @TI5040
    @TI5040 3 роки тому +138

    Papa, would you make a series of videos on complex Analysis. (i have seen a natural teacher in you and would love you to make videos on complex Analysis)

    • @rohanmitra3900
      @rohanmitra3900 3 роки тому +1

      Yes please! Im taking a Complex Analysis course this semester, and it would be very helpful if you made more videos on Complex Analysis!!

    • @nizarch22
      @nizarch22 3 роки тому +3

      Yeah. Like spicy meme free though, then professors can recommend it too. As much as we love the spice, most can't handle it.

  • @shivam5105
    @shivam5105 3 роки тому +48

    Zach star: You underestimate my power. With my stand, star engineer, I can make EVERY TRIGONOMETRIC RATIO EQUAL TO ITS ARGUMENT
    Flammy: bakayaro, you failed to consider my final attack, COS X = X
    Zach star: NANIIIIII

    • @anonymous_4276
      @anonymous_4276 3 роки тому

      This deserves to be the top comment! They should actually play such a skit.

  • @karabodibakoane3202
    @karabodibakoane3202 3 роки тому +12

    "Let f be anal."
    I've never laughed so much in a Math video.

    • @ismailhasan348
      @ismailhasan348 5 місяців тому +1

      Yeah. I was scrolling through the comment section just to see this comment.

  • @neilgerace355
    @neilgerace355 3 роки тому +8

    3:31 Was waiting for that word, since you had already written it

  • @Bean-Time
    @Bean-Time 3 роки тому +4

    3:30 that is a sentence I never expected to hear.

  • @emilsriram92
    @emilsriram92 3 роки тому +15

    I love you Flammable Maths! Even as a twelve year old, your content is extremely entertaining.

  • @akselai
    @akselai 3 роки тому +8

    cos(whaa) = whaa

  • @leobrouk
    @leobrouk 3 роки тому +2

    When I was a kid, I've not only discovered how to find the answer with a calculator, but also I've came up with an approximate form (pi/160)^(1/13).

  • @jarogniewborkowski5284
    @jarogniewborkowski5284 3 роки тому +1

    Yes, please make a video with derivation of that huge formula. Your explenations look so clear. You're the best on YT. Best regards

  • @EpicMathTime
    @EpicMathTime 3 роки тому +7

    How the hell did UA-cam even let you publish this? Normally it throws out an ERROR 666: TITLE IS LUCIFERIAN in situations like this.

  • @mr.rocketman8858
    @mr.rocketman8858 3 роки тому +3

    I‘m an engineer and can confirm the title, before even watching this video.

  • @raulpr777
    @raulpr777 10 місяців тому

    People should check OEIS (The On-Line Encyclopedia of Integer Sequences) sequences A369186 and A369187. The sequences are the denominators and the numerators of an infinite sequence that converges to the Dottie number. I obtained the infinite sequence using an obscure method called "Whittaker's root series formula". I believe that this is the first sequence that converges to the Dottie number that only uses integers. I actually used Whittaker's root series formula to obtain infinite series for other constants (1/e, ln(2), Plastic ratio, Backhouse's constant etc).
    I am trying to make Whittaker's root series formula more known. It is relatively easy to apply since it just involves the determinants of Toeplitz matrices. The Toeplitz matrices are created using the coefficients of polynomial equations or Taylor/power series.

  • @beautyofmath6821
    @beautyofmath6821 3 роки тому +32

    Although I couldn’t understand it, I can see its still great.

    • @Ultiminati
      @Ultiminati 3 роки тому +4

      Maybe because the video is 17 mins long and you commented 4 mins after the video was released lol

    • @beautyofmath6821
      @beautyofmath6821 3 роки тому +3

      @@Ultiminati havent learn complex analysis, so…

    • @beautyofmath6821
      @beautyofmath6821 3 роки тому +1

      @@Ultiminati I already don’t understand at the very start lol.

    • @extinctwarriorrace1755
      @extinctwarriorrace1755 3 роки тому

      @@beautyofmath6821 You don't want to learn complex an4l lmao

  • @ulissemini5492
    @ulissemini5492 3 роки тому +3

    A fast way to compute it is just to run x = cos(x) over and over, the fixed point will be at x=cos(x)
    import math
    x = 1
    for i in range(100): x = math.cos(x)

    • @guigazalu
      @guigazalu 3 роки тому

      for anyone who is more into JS (or just using the browser's console (Ctrl + Shift + K / F12)):
      for(var x = 1, i = 0; i < 100; i++) x = Math.cos(x)
      console.log(x)

    • @HypeLevels
      @HypeLevels 3 роки тому

      @@guigazalu for(var i = 1; i < 100; i++) console.log(Math.cos(i))

    • @guigazalu
      @guigazalu 3 роки тому

      @@HypeLevels But this... don't... alter the value of a variable, which should approximate the result of (cos x = x).

    • @HypeLevels
      @HypeLevels 3 роки тому

      @@guigazalu ah true forgot that, I’m dumb sorry

    • @guigazalu
      @guigazalu 3 роки тому

      @@HypeLevels No worries. It happens to everyone.

  • @livingcodex9878
    @livingcodex9878 3 роки тому +6

    *wah is equal to the cosine of wah*
    Yes

  • @holyshit922
    @holyshit922 3 роки тому +1

    I calculated approximate value by Newton's method in Python
    Python code
    import math
    b = True
    i = 0
    x0 = 0
    while b:
    x1 = x0
    x0 = x0 - (x0-math.cos(x0))/(1+math.sin(x0))
    i += 1
    b = not(abs(x1-x0) < 1e-12)
    For paper and pencil calculations x0=pi/4 would be probably better choice of initial guess

    • @holyshit922
      @holyshit922 3 роки тому

      You can introduce variable for accuracy of calculations and change assign operator in second line of while loop

  • @hyper_exe3420
    @hyper_exe3420 3 роки тому

    teacher:how is it x? me:COS(X)=X

  • @frozenmoon998
    @frozenmoon998 3 роки тому

    Papa Flammy: *Have you checked out Flammy's Wood already?*
    Me: *I haven't visited that part of the internet for a while*

  • @ЧингизНабиев-э2г
    @ЧингизНабиев-э2г 3 роки тому +12

    Nice! But, personally, for computational purposes, I’d use Newton method

    • @stephendonovan9084
      @stephendonovan9084 3 роки тому

      I think the secant method is actually slightly preferred here, since for Newton's method you'd need to calculate both the sine and the cosine, which would essentially lead to each step taking twice as long as a secant method step. So since phi^2 > 2 you end up with better convergence rate with the secant method when time is a factor.
      That's not to say you're wrong with Newton's method, that would work perfectly fine, just wanted to spread some knowledge

  • @thegodsofai3845
    @thegodsofai3845 3 роки тому +2

    Zach star: ahh yes, your slowly learning

  • @HichemFrozenBlood
    @HichemFrozenBlood 3 роки тому

    cos(x) = x then -1 ≤ x ≤ 1. x cannot be in [-1, 0[ because for such values cos(x) is strictly positive. We conclude that x must be in [0, 1].
    Let g(x) = cos(x) - x. This function is decreasing in [0, 1] and g(1) < 0 < g(0) so there exists a unique c such that g(c) = 0.
    So, cos(x) = x has a unique real solution in [0, 1] which can be approximated by a dichotomic search (for example) with an error decreasing exponentially.

  • @jonathanjocobo5654
    @jonathanjocobo5654 3 роки тому +1

    If you actually do the Taylor series for cosine (not the Maclaurin series) there is a y term. We just always use the Maclaurin and call it the Taylor series for some reason

  • @RC32Smiths01
    @RC32Smiths01 3 роки тому +4

    Finally! The mathematical legends comes to life!!!!

  • @theaceman989
    @theaceman989 3 роки тому +2

    cos(x) = x is easy to solve with fix point iteration, three lines of code in Python. This increases the velocity of convergence ;)

  • @therealhotwatertunes
    @therealhotwatertunes 3 роки тому +1

    cos is lipschitz continuous with at most K=sin(1) on the interval [0,1], so you can also use the banach fixed point theorem and just do cos(cos(cos(1))) etc and get the answer too. tho banach is also overkill in this situation, the theorem you used looks like a real monster imo

  • @jorgenteichter3424
    @jorgenteichter3424 Рік тому

    Indeed complicated. What about to use the Intermediate Value Theorem (Bolzanos) from the start, to check if a solution exists. After that, things will be easy. f(n) = cos(n) - n = 0 and by the use of Bolzanos theorem it will be an easy numerical problem?

  • @00bean00
    @00bean00 2 роки тому

    Dottie!
    I'll see if you mentioned, but the analytic representation is a fractal expression basically,.

  • @Taterzz
    @Taterzz 3 роки тому +2

    when did this become a physics channel?

  • @juijani4445
    @juijani4445 3 роки тому +6

    cos of (death) = death

  • @JoeShmowYo
    @JoeShmowYo 3 роки тому

    u draw ur summation operator with an underbite and it always makes me laugh

  • @goodplacetostop2973
    @goodplacetostop2973 3 роки тому +5

    17:11

  • @edmundwoolliams1240
    @edmundwoolliams1240 3 роки тому +4

    Great video! I'm confused at why you refer to it being closed form, however. Being an infinite series, therefore having infinitely many operations, means it is not in closed form, correct?

    • @stephendonovan9084
      @stephendonovan9084 3 роки тому +1

      He might have meant an analytic expression and just misspoken

    • @edmundwoolliams1240
      @edmundwoolliams1240 3 роки тому

      @@stephendonovan9084 I thought as such. I just found it a bit abnormal from Papa who is usually very sound with his mathematical language, but we can all slip-up sometimes.
      (I was also about 5% unsure that I might have had it wrong too!)

  • @arifahaque6616
    @arifahaque6616 3 роки тому +1

    i just solved this problem in numerical analysis using Newton's method and fixed point method and got this in recommended. UA-cam is scary.

  • @daiyousei.1586
    @daiyousei.1586 3 роки тому +1

    How do you just clean your board as clean as my search history?

  • @derfret1365
    @derfret1365 3 роки тому +1

    new fundamental theorem just dropped

  • @elhamidyabderahman5966
    @elhamidyabderahman5966 3 роки тому +1

    I love the "wa"

  • @maxthexpfarmer3957
    @maxthexpfarmer3957 3 роки тому +1

    fun fact: Dottie's number is sometimes represented by the Armenian letter ա.

  • @isurukumarasiri4411
    @isurukumarasiri4411 3 місяці тому

    can use Banach fixed point theorem can't we ?

  • @lukandrate9866
    @lukandrate9866 Рік тому

    I tried doing it myself and was frustrated about how in the world you calculated the a_n sequence in a closed form. Watched the video and saw that you didn't 👍

  • @SuspiciousTree-i4l
    @SuspiciousTree-i4l 3 роки тому +1

    Guys what's the weird spiral thing he writes after the infinite series???

  • @SamuelAndradeGTutos
    @SamuelAndradeGTutos 3 роки тому +1

    What about the nontrivial solution for sin(x)=x ?

    • @davidbrisbane7206
      @davidbrisbane7206 3 роки тому

      I don't think there are any non-trivial solutions. I can see this just by looking at the plot in Desmos for y = x and y = sin(x).
      So, I think sin(0) = 0 is the fixed point.
      The fixed point of x = sin(2x) would be more interesting to look at 😁.
      Looks like there is one trivial solution and two non-trivial points. I guess if you look in a suitable domain around x = 0, a suitable domain around = 1 and a suitable domain around x= -1, then you can find the unique fixed points in each of these domain. The fixed points seems to be (to fourdecimal places)
      x = 0,
      x = 0.9477 and
      x = -09477 respectively.

  • @jarogniewborkowski5284
    @jarogniewborkowski5284 3 роки тому

    Could You introduce Lagrange's multipliers? Best regards

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @inyobill
    @inyobill 3 роки тому

    Yhis has bothered me for some time, I finally figured out why. The domain and range are disjoint sets, specifically, The argument of Cos is an angular measure, radians (if one is sane), and Cos(argument) is dimensionless.

    • @tomkerruish2982
      @tomkerruish2982 3 роки тому +3

      Radians are also dimensionless. Proof: the distance traveled by a rotating circle equals the radius times the radians rotated. Radians times distance yields distance.

    • @ZipplyZane
      @ZipplyZane 3 роки тому +1

      The whole underlying idea of radians is that they are the actual dimensionless measure of an angle, being the measure of the arc lengthU* divided by the radius. Two lengths divided by each other will be dimensionless.
      *i.e. a portion of the circumference of a circle.

    • @inyobill
      @inyobill 3 роки тому

      @@ZipplyZane Your statement makes good sense. I am out of my area of "expertise", to use the term loosely. Something doesn't taste quite right, but there are lots of things I don't understand. I do try to understand when to not argue, and hence, to not explicitly display my ignorance. Leave 'em in doubt, where ever possible, eh?

  • @thekingofgindio
    @thekingofgindio 3 роки тому

    Papa Flammy, I think you are confusing the trigonometric functions. Oh sorry, I forgot that sin(x)=tan(x)=sin(x)/cos(x)=x, hence xcos(x)=sin(x)=tan(x)=sin(x)/cos(x)=x/cos(x)=tan(x)/cos(x)=1/sin(x), hence cos(x)=1/xsin(x)=1/x²=(cos²(x)+sin²(x))/x²=(cos(x)/x)²+1=1/tan²(x) +1=(1+x²)/x²=(x+1)²/x² for little values of 1 (every number is closer to 1 that to infinity, so this holds for every value of 1), hence cos(x)=(sin(x)+1)²/sin²(x)=(sin(x)+sin²(x)+cos²(x))²/sin²(x)=(1+x+1/x)²=((x²+x+1)/x)², but this means x²+x+1=x+1-> x²=0, so for little values of 1 we have x²=x-x+1-1=(x-1)+1-x=x+1, so cos(x)=((0+x²)/x)²=x²=x+1=x for little values of 1, Q.E.D.

  • @magnumfang
    @magnumfang 3 роки тому +3

    Ah yes, Engineering

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @safekid01
    @safekid01 3 роки тому

    i beg pls do integrals again

    • @mathematicsmi
      @mathematicsmi 3 роки тому

      If you interest for integrals, just see my channel..

  • @DerrykSchieck
    @DerrykSchieck 3 роки тому

    for small x cosx ~1-x^2/2 . Solve for x. Find x = 0.73. Good enough

  • @plemli
    @plemli 3 роки тому

    Who hasn't repeatedly pushed 'cos' on a calculator ?
    It works in degree mode too, resulting in a different number but with *way* faster convergence. Why ?

  • @Chemi4001
    @Chemi4001 2 роки тому

    quality content I love

  • @jasiumater
    @jasiumater 3 роки тому

    Why did I expect to understand this video if I have just begun 11th grade?

  • @spaghetti1383
    @spaghetti1383 3 роки тому +1

    Why not use 0 for x0?

  • @syedinayat3548
    @syedinayat3548 3 роки тому +2

    Hey flammmy i wanna send you a meme, but i dont have instagram facebook or twitter (basically i live in a cave) do you have any other source from which i can send you that

  • @earendilthebright5402
    @earendilthebright5402 3 роки тому

    Could anyone please help me integrate 1/(x^2 * 2^x) ? I'm very stuck. Tried by parts which seems like it could be on the right track but its defeated me thus far.

  • @WhattheHectogon
    @WhattheHectogon 3 роки тому

    Excellent video! I did a video involving the Dottie number last year, it was about eclipses :D

    • @PapaFlammy69
      @PapaFlammy69  3 роки тому

      ohhhh, very nice! Gotta watch it :)

  • @AceLordy
    @AceLordy 3 роки тому

    It reminds me of the FundamentalTheoremOfEngineering .

  • @muahmuah4135
    @muahmuah4135 3 роки тому +1

    Its really rare for a guy who has an intrest in mathematics

  • @kairostimeYT
    @kairostimeYT 3 роки тому

    Numerical Methods go brr.

  • @HolyG-sus
    @HolyG-sus 3 роки тому +1

    Super string theory 😆

  • @beardedboulderer2609
    @beardedboulderer2609 3 роки тому

    DOTTI BOI!!!

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @aidancardona8592
    @aidancardona8592 3 роки тому +1

    “Daddy’s Number”😏😏😏😏😏

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @pandabearguy1
    @pandabearguy1 3 роки тому

    Every functuon of x has to be equal to x for all x

  • @Bean-Time
    @Bean-Time 3 роки тому +1

    This is the first video of yours that I watch, do you pronounce "y" as 'wah' on purpose? Your accent is really good so it would seem strange that you would have trouble pronouncing "y". It's pronounced like "why" FYI

  • @andrekz9138
    @andrekz9138 3 роки тому

    Not scary? Lol, this is my favorite horror series on any media

  • @alexting827
    @alexting827 3 роки тому

    I like how he says "wa!" instead of "y"

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @stephendonovan9084
    @stephendonovan9084 3 роки тому

    (meanwhile in the computer science department)
    hehehe secant method go brrrrr

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @Mark16v15
    @Mark16v15 Рік тому

    x = .739085 radians approximately

  • @bulldawg4498
    @bulldawg4498 3 роки тому +1

    I have to pass on this one, as it's well beyond my pay grade ...

  • @manuel3494
    @manuel3494 3 роки тому +5

    Silly flammy, we all know cos(x) = 1
    Have you been skipping engineering class again?

  • @garvett6660
    @garvett6660 3 роки тому +1

    cos(macaroni) = macaroni

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @cardinalityofaset4992
    @cardinalityofaset4992 3 роки тому

    cosine of WHAAA

  • @LimonluYoda
    @LimonluYoda 3 роки тому

    Selam Olsun Okan Tekman'a

  • @KlaudiusL
    @KlaudiusL 3 роки тому

    I come not for the video but for the comment section 😁

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @DrDeuteron
    @DrDeuteron 3 роки тому

    It's obviously transcendental from the Lindemann-Weierstrass theorem....duh!

  • @rubenvegas7926
    @rubenvegas7926 3 роки тому

    What in engineering is this?

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @denizgoksu9868
    @denizgoksu9868 3 роки тому

    Dotty boi ❤️

  • @eliasmazhukin2009
    @eliasmazhukin2009 3 роки тому +1

    Which one is better?
    Like if cos
    Comment if sin

  • @vivoroses6267
    @vivoroses6267 3 роки тому +1

    People writing comments about math and smart stuff
    Me: haha anal. Function

  • @yoav613
    @yoav613 3 роки тому

    Newton raphson

  • @rodrigoqteixeira
    @rodrigoqteixeira 7 місяців тому

    I just wanna know the answer so someone who actually watched can tell me?

  • @bluto3426
    @bluto3426 3 роки тому

    Y = waa 😼

  • @رضاشریعت
    @رضاشریعت 3 роки тому

    Cosx was equal to 1

  • @redasatisfaction9638
    @redasatisfaction9638 3 роки тому +1

    U seem much more serious in this video wts happening to u papaflammy

    • @PapaFlammy69
      @PapaFlammy69  3 роки тому +1

      Nothing tbh, wasn't meant to be serious at all hehe^^

  • @loukafortin6225
    @loukafortin6225 3 роки тому +3

    True engineers would use Newton’s method!

    • @korigamik
      @korigamik 3 роки тому

      Elaborate.

    • @oni8337
      @oni8337 3 роки тому

      Nah use the bisection algorithm lmao

  • @ricardoparada5375
    @ricardoparada5375 3 роки тому +5

    Cos(x) = x? That’s easy just let cos(x) = sin(x + pi/2). Then obviously sin(x) = x and cos(x) = 1 by fundamental theorem of engineering. So we have 1 = x + pi/2 and so we solve for x to get x = 1 - pi/2

  • @flamingpaper7751
    @flamingpaper7751 3 роки тому +2

    How is cos(x) = x if sin(x) = x?

    • @Devesteter252101
      @Devesteter252101 3 роки тому

      Second condition implies x = 0, but cos(0) isn’t equal to 0 so there are no solutions

  • @windowsvista2.041
    @windowsvista2.041 3 роки тому +2

    Isn't cos(x)=1?

  • @noertri618
    @noertri618 3 роки тому

    Use numerical method

  • @iaexo
    @iaexo 3 роки тому

    x=Cosx=1

  • @ДмитрийКоваленко-о9ф
    @ДмитрийКоваленко-о9ф 7 місяців тому

    а где 0.73

  • @cremedelamem2
    @cremedelamem2 3 роки тому

    this is cursed

  • @거미남자_spidy
    @거미남자_spidy 3 роки тому +1

    Solve Cos(x)=x ???
    Newton's method !

    • @akashraj6391
      @akashraj6391 3 роки тому

      ua-cam.com/video/Uw_WUvWQEkg/v-deo.html

  • @dylanbyrne8478
    @dylanbyrne8478 3 роки тому

    Wah

  • @houssam7930
    @houssam7930 3 роки тому

    👌