Mathematik - Punktweise und gleichmäßige Konvergenz von Funktionenfolgen - Teil 1

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 66

  • @viktoradam1288
    @viktoradam1288 11 років тому +68

    Die Aufgaben und auch die Erklärung ist für Studenten (1.Sem) perfekt, nicht allzu ausführlich und auf einem leicht folgbaren Niveau. Endlich ein hilfreiches Video bei dem ich nicht ständig skippen musste.

  • @olaftaenzer6794
    @olaftaenzer6794 3 роки тому +17

    Ich danke dir für deine sehr verständlichen Videos! Zum Verstehen des Stoffes für ahnungslose Erstsemester wie mich ist das perfekt! :)

  • @jenniferelisa
    @jenniferelisa 8 років тому +13

    Endlich mal jemand der das an einem einfachen Beispiel erklärt hat und nicht so super kompliziert einsteigt wie mein Professor. Vielen dank :)

    • @Daniel-oh2ug
      @Daniel-oh2ug 3 роки тому +1

      unserer macht nicht mal ein beispiel :')

  • @thepaperelks
    @thepaperelks 10 років тому +58

    trivial !!!!

  • @clash_pineapple_
    @clash_pineapple_ 3 роки тому +5

    An all die Kommis von vor fast 10 Jahren: Habt ihr euer Studium erfolgreich beenden können? Wo steht ihr jetzt im Leben nach all der Zeit? :]

    • @jonasschreiber2461
      @jonasschreiber2461 6 місяців тому +2

      das denke ich mir auch nach 13 Jahren alten Kommentaren ahaha

    • @TheFatMo
      @TheFatMo 4 місяці тому +2

      Wie sieht’s bei dir aus hahahhaha

  • @schlechtestergtaspielerdek3851

    Danne. Endlich nicht nur intuitiv verstanden somdern durch dieses vodeo jetzt auch komplett berechenbar. Hoffen wir die HM Klausur gleich wird gut😂

  • @dariankoltzer3646
    @dariankoltzer3646 11 років тому +24

    tolle arbeit , aber bitte nächstes mal mach dir ein Struktur erstmal , weil man manchmal dich nicht wirklich folgen kann, dh schreib die definition erkläre sie dann und dann ein bsp :)

  • @Seppelicius
    @Seppelicius 11 років тому +3

    *****
    Also bei der gleichmäßigen Konvergenz, ist es ja so, dass es ein N=N(Epsilon,x) geben soll mit n>=N, sodass die von dir beschriebene Ungleichung kleiner wird als jedes Epsilon - für ein beliebiges x.
    Nun ist hier ja vorausgesetzt, das es GENAU ein N gibt mit dem die Ungleichung (für beliebiges x aus R) kleiner wird als Epsilon.
    Aber das geht einfach nicht. Denn wenn du x immer größer werden lässt (aber jedes mal fest), dann verändert sich das N das du wählen musst sodass die Ungleichung wahr ist. Es soll aber ein N gefunden werden, so das für alle x aus R die Ungleichung kleiner als Epsilon wird.
    Bei dem ersten Beispiel, war x maximal 1. So kann mein ein N finden sodass die Ungleichung für alle x aus dem Intervall [-1;1] die Ungleichung zutrifft.
    Lg :)

  • @atori_pup
    @atori_pup 6 років тому +3

    OMG ich studiere Mathe und heiße Marius und bin schon im vierten Semester und sehe diesen Kanal jetzt erst !!! Mein Leben hatte vorher keinen Sinn...

    • @Mathemarius
      @Mathemarius  6 років тому +3

      Für Mathemarius ist es nie zu spät 😉

  • @pangasius1372
    @pangasius1372 9 років тому +4

    wunderbar, vielen dank!

  • @luckyluckymachen
    @luckyluckymachen 13 років тому

    *anbet* vielen vielen vielen vielen Dank, endlich hab ich es gerafft!! Danke danke danke!!!

  • @n0MC
    @n0MC 11 років тому +1

    warum darf man x von n abhängig machen wie du es hier bei aufgabe b machst?? wie folgt das aus der definition von glm.konv. supremum (für alle x aus dem def-bereich) von |f_n(x) - f(x)| -> 0 für n -> unendlich?? wär genial wenn mir jemand die frage beantworten könnte, danke im vorraus.

  • @KJTFS
    @KJTFS 12 років тому

    zu der aufgabe von russenkippe: ich verstehe noch nicht ganz wieso die funktionenfolge nicht gleichmäßig konvergiert. denn die grenzfunktion hat doch an der stelle x=1 den wert 1. demnach würde |0-fn(x)|

  • @flasher395
    @flasher395 12 років тому

    Falls noch von Belang, teile den Definitionsbereich in [0,1) und "[1]" ein, betrachte die Fälle getrennt und schon stellst du fest, das die Funktionenschar für [0,1) gleichmäßig konvergent wäre, allerdings mit der 1 nicht mehr ist.

  • @Mathemarius
    @Mathemarius  13 років тому

    @russenkippe:
    Du hast dir die Frage also schon selbst beantwortet. Es konvergiert punktweise, da hast du recht.

  • @kingclashercastleclash6359
    @kingclashercastleclash6359 4 роки тому

    Danke Tolles Video

    • @Mathemarius
      @Mathemarius  4 роки тому

      Danke, bald feiert das Video zehnten Geburtstag! 🎉🎉🎉

    • @kingclashercastleclash6359
      @kingclashercastleclash6359 4 роки тому

      @@Mathemarius vllt passend dazu die 100 Tausend Aufrufe? 🤔

  • @1matzeplayer1
    @1matzeplayer1 4 роки тому +1

    Top Video!

  • @Marrow007
    @Marrow007 12 років тому +1

    super sache hab das nie verstanden mit konvergenz bei funktionsfolgen ;) jetzt hab ichs einigermaßen raus

  • @TheSchalle1893
    @TheSchalle1893 12 років тому

    Schon probiert, liegt es daran, dass man kein epsilon findet was immer größer ist als [0-t^n]=t^n im Intervall [0,1) ?

  • @niloofarsamirnasri563
    @niloofarsamirnasri563 2 роки тому

    wieso hast für x nicht -1 eingesetzt ?

  • @magdalenasteuxner2892
    @magdalenasteuxner2892 5 років тому

    Wenn ich jetzt eine Funktionenfolgen mit einer Funktionsvorschrift die abhängig von n wechselt, wie zeige ich dann punktweise und gleichmäßige konvergenz, danke schonmal :)

  • @kingibo04
    @kingibo04 9 років тому +16

    Für Solche, die es auf einem Blick verstehen wollen:
    Beim Konvergieren einer Funktionenfolge fn(x), nähert sich diese gegen eine Grenzfunktion f(x).
    Dabei ist es nicht selbstverständlich, dass diese Konvergenz für jedes x gilt.
    Es könnte ja sein, dass es ein x gibt, sodass
    fn(x) ----> f(x) +a
    für n gegen unendlich gilt. (a ungleich null). Damit wäre fn nicht gleichmässig konvergent gegen f, insbesondere auch nicht punktweise konvergent, da mindestens in einem Punkt die Konvergenz gegen f um den Wert a abweicht.
    Also für die glm. Konvergenz muss fn ----> f auf dem Definitionsbereich gelten. Ausserdem wird auch gefordert, dass diese Konvergenz mit gleicher Geschwindigkeit gilt.
    Damit man nicht jedes x aus dem Definitionsbereich testen muss, holt man sich das x mit maximaler Abweichung von fn zu f und schaut, ob diese Abweichung zur Null wird. Also formal die Frage:
    Gibt es zu beliebigem epsilon >0 eine natürliche Zahl N, sodass
    sup | fn(x) - f(x) | < epsilon für alle n ≥ N ?
    Wenn dies der Fall ist, dann gilt dies auch für alle x aus dem Definitionsbereich undzwar mit gleichmässiger Geschwindigkeit und wir haben glm. Konvergenz.
    Gleichmässige Konvergenz bedeutet also, dass es keine Ausnahmen geben darf, sondern dass fn im gesamten Definitionsbereich exakt und gleich schnell gegen f konvergiert.

    • @Mathemarius
      @Mathemarius  9 років тому +2

      +kingibo04 Das ist ehrlich gesagt totaler Blödsinn. Was du hier als gleichmäßige Konvergenz beschreibst, nämlich, dass für jedes x des Definitionsbereichs die Folge f_n(x) gegen f(x) konvergiert, ist die punktweise Konvergenz. Gleichmäßige Konvergenz ist mehr. Aber nett, dass es trotzdem einen Daumen nach oben bekommt ;)

    • @klonvomhaus
      @klonvomhaus 9 років тому

      +Mathemarius Wir haben im Mathestudium gelernt:
      Punktweise Konvergenz: fn(x) konvergiert gegen f(x) für ein beliebiges aber festes x.
      Gleichmäßige Konvergenz: fn(x) konvergiert IMMER gegen f(x).
      Also wäre obenstehende Definition durchaus richtig...

    • @Mathemarius
      @Mathemarius  9 років тому

      +klonvomhaus Dann habt ihr Blödsinn gelernt.

    • @Mathemarius
      @Mathemarius  9 років тому

      +kingibo04 Nein, es stimmt nicht. Wenn f_n punktweise gegen f konvergiert, tut es das für jedes x des Definitionsbereichs. Dein a ist also immer 0. Schau dir mal die Wikipedia-Artikel zu "Gleichmäßige Konvergenz" und "Punktweise Konvergenz" an. Ebensogut steht das in jedem "Einführung in die Analysis"-Buch.

    • @Mathemarius
      @Mathemarius  9 років тому +3

      +kingibo04 Doch, es ist falsch. Du schreibst oben: "Es könnte ja sein, dass es ein x gibt, sodass fn(x) --> f(x) +a für n gegen unendlich gilt, a ungleich null." Das kann aber nicht sein! Wenn f_n gegen f punktweise konvergiert, dann per Definition von punktweiser Konvergenz für jedes x des Definitionsbereichs. Dein a ist also immer 0.

  • @wettenFTW
    @wettenFTW 12 років тому +1

    Irgendwie bin ich noch verwirrter als vorhin, was die punktweise bzw. gleichmäßige Konvergenz betrifft ..

  • @spechtbert
    @spechtbert 13 років тому

    Ich finde deine Videos echt klasse!

  • @russenkippe
    @russenkippe 13 років тому +1

    Konvergiert f:[0,1]-->R; f_n(t)=t^n punktweise? Man bekommt ja zwei versciedene Grenzwerte: 0 und 1 ...

    • @keathordsen7277
      @keathordsen7277 Рік тому

      Vielleicht nochmal für andere interessant - die Funktionenfolge konvergiert punktweise, jedoch nicht gleichmäßig. Die Grenzfunktion wird bei jedem höheren n etwas weiter "an die 0 gedrückt". Im Punkt x=1 schnellt die Funktion allerdings dann gegen 1. Die Grenzfunktion ist also sozusagen f(x) = 0 für x< 1, sowie f(x) = 1 für x=1.
      Malt euch am besten mal ein Bild der Funktion.

  • @NoctLightCloud
    @NoctLightCloud 12 років тому

    ich versteh es endlich :D danke!

  • @huxi8070
    @huxi8070 9 років тому

    Hallo. Wie bist in Aufgabe b drauf gekommen, das x=n ist? Danke

    • @TheSimpleJam
      @TheSimpleJam 9 років тому

      +Zuzana Dee der Definitionsbereich der Folge ist ganz R , das heißt das alle Zahlen aus R x seien könne. x=n war nur ein Beispiel das hier keine gleichmäßige Konvergenz vorliegt (sowas wie ein Gegenbeispiel). Mit x=n ist es halt einfach zu sehen das die Folge nicht gleichmäßig konvergieren kann. Er hätte auch x=n+1 wählen können. Dann hätte man n+1/n was auch wieder 1 ergäbe.

    • @julianarnold21
      @julianarnold21 4 роки тому

      @@TheSimpleJam n+1/n ergibt in keinem Fall 1, aber es würde bei steigendem n gegen 1 konvergieren ^^ aber ansonsten ist es natürlich korrekt, was du sagst

    • @TheSimpleJam
      @TheSimpleJam 4 роки тому

      @@julianarnold21 ich glaube nicht, dass das jemanden nach 4 Jahren interessiert, aber ja war leider schlecht formuliert, da gebe ich dir recht 😊

    • @julianarnold21
      @julianarnold21 4 роки тому +1

      @@TheSimpleJam alles gut, wollte damit auch nur überprüfen, ob ich selbst vlt einen kleinen Logikfehler hatte 😄😌 natürlich verändert es den Beweis dazu nicht :)

  • @Roabery88
    @Roabery88 11 років тому

    hast du nicht im video behauptet, dass jede beschränkte fkt gleichmäßig konvergiert oder hhab ich es falsch verstanden

  • @Roabery88
    @Roabery88 11 років тому

    dazu gehört manchmal mehr als diese eine formel. an der stelle 1 hat die funktion einen sprung ist ist somit nicht komplett stetig

  • @amrrelsheikh
    @amrrelsheikh 3 роки тому

    vielen Dank

  • @mehdiben4856
    @mehdiben4856 11 років тому +4

    verwirrend ... :s

  • @TheSchalle1893
    @TheSchalle1893 12 років тому

    Aber nicht gleichmäßig? Warum?

  • @TheYaoify
    @TheYaoify 13 років тому

    Cooler Kuli! :D

  • @Mathemarius
    @Mathemarius  12 років тому

    Die triviale Antwort: Weil hier die Bedinung für gleichmäßige Konvergenz nicht erfüllt ist.
    Willst du dafür einen Beweis? Es ist nicht schwierig einzusehen, also probier ruhig mal selbst.

  • @Mathemarius
    @Mathemarius  14 років тому

    @Justus135:
    Nein.

  • @ph0non
    @ph0non 4 роки тому

    Warum berechnest du f(x) - fn(x)? Überall anders, sei es Wikipedia oder sonst wo, ist es immer fn(x)-f(x) 🤔🙁

    • @Mathemarius
      @Mathemarius  4 роки тому

      Ich nehme ja noch den Betrag, da spielt das keine Rolle.

    • @ph0non
      @ph0non 4 роки тому

      @@Mathemarius danke für die Antwort, hatte mich schon gewundert 😅

    • @Mathemarius
      @Mathemarius  4 роки тому

      @@ph0non Und nun wundert dich gar nichts mehr?

    • @ph0non
      @ph0non 4 роки тому

      @@Mathemarius ja, jetzt ist die Welt wieder in Ordnung :)

  • @user-it4iz7pv1g
    @user-it4iz7pv1g 4 роки тому

    11:29 Ist doch beides 3?🤦

  • @xYagod
    @xYagod 10 років тому

    Top !!! (y)

  • @Wlad1337
    @Wlad1337 7 років тому

    ok

  • @nussmaximilian8443
    @nussmaximilian8443 9 років тому +2

    hatte nicht das Gefühl, dass man sich die Struktur des Videos wirklich überlegt hat. Wirkt sehr improvisiert und unvorbereitet. Vllt ist man aber auch nur verwöhnt durch wirklich gute Tutorials wie von Simplemaths.
    Trzd Danke für die Bemühungen.

    • @physikus7888
      @physikus7888 9 років тому

      +Nuss Maximilian Das ist doch super gut :D

    • @dnamhc
      @dnamhc 8 років тому +8

      The simplemaths taugt meiner Meinung nach recht wenig. Finde das hier viel besser.

    • @christianphexberger7952
      @christianphexberger7952 8 років тому +14

      Simple Math geht mir eher auf den Keks. In jedem Tutorial muss zwingend ein Kraftausdruck vorkommen und erwähnt werden wie scheiße doch Mathe eigentlich ist nur um "gefallen" zu werden.
      Ist ja auch total in Mode. Jeder der sagt "Ich kann kein Mathe hahaha" kriegt Applaus. Jeder der sagt "Ich bin/war gut in Mathe" wird nur komisch angeschaut.

    • @julianarnold21
      @julianarnold21 4 роки тому +3

      Simple Maths sind die größten Pflaumen in der Mathematik... es gibt in jedem Fach mindestens 2 oder 3 bessere UA-camr als SimpleClub..

  • @rocek9791
    @rocek9791 11 років тому +3

    Du erklärst es zu kompliziert und es ist schwer dir zu folgen. Schade

  • @LesesesseL
    @LesesesseL 7 років тому

    Schlechtes Video.Fang doch erstmal mit einer Definition an und erkläre dann die einzelnen Schritte, die Unterschiede und mach dann ein Bsp. Jedes mal korrigierst du dich mit "äh, machen wirs anders, oder ähm....." das kann man sich ja nicht anhören. Und dann das Hinzugefüge zu schon bestehenden Aussagen......nee, du.....