Этот минисериал по нейронкам нужно в универе показывать на парах! Очень хотел бы подробные разборы по нейронкам, что-то типа курса для новичков в этой сфере, чтобы по завершении написать свою первую "серьезную" нейронку для решения какой-нибудь прикладной задачи. У тебя талант к рассказу и объяснениям, успехов!
Главное что бы опыт ии, мог передаваться дальше. И бот в новой карте не начинал все с начала! А уже помнил что он делал до этого. И еще! Так же опыт развивался и переходил и в другие игры! Тогда этот точно полезный ии, возможности которого будут безграничны! И плюс что бы он сам смог создавать условия для своего обучения и ускорения обучения. Смог сам себя кодировать.
Хауди лучший мотиватор. Реально я начал разбираться по немного в нейронках только благодаря нему (и по началу по его же роликам). Лайкните если вас тоже мотивирует. Хауди сенкю огроменное за контент
Для 5ого способа не нужно создавать датасет, можно попробовать взять готовые POV демки про игроков на конкретной карте (должен существовать алгоритм, выдергивающий нажатия клавиш) Интересно было бы посмотреть как на нейронку, играющую в стиле конкретных игроков, так и помесь разных стилей игры. А еще вопрос, это анализ звуков: шагов, выстрелов и т.д. Плюс гранаты, как быть с ними?
Ну мы же можем знать в какой стороне находится игрок. Просто берём и делаем скажем так воображаемую линию где может быть игрок, а потом на карте вырезаем места где игрок не может быть (в стенах и.т.д.).
Если бы перебирать очень много демок чтоб на демках он постоянно учился, было бы не плохо, но также есть проблемы, если бот кинет ванвей то он не увидит противника, и скорее всего будет делать много ненужных действий, ведь он будет повторять действия не понимая для чего он это делает
@@kenaleksey Да, это проблема, чтобы оно работало правильно, нужна система расчета полезности действий, например, победа в раунде, это 100 очков, убитый противник - это 20 очков, раненный на 50хп противник - 8 очков, установка бомб, контроль территории - тоже должны иметь свой вес, убитый тимейт -20 очков. Тогда нейронка будет понимать, что цепочка действий увеличила вероятность победы в раунде. Насчет ванвея, компьютерное зрение может определить силуэт, и да, будут как ложные срабатывания, так и не распознанные силуэты, но ведь в жизни так и есть)
@@kenaleksey какой ванвей?) Вы тут уже за профессиональный кс рассуждаете, до этого ещё очень далеко. На данном этапе бота хотят базе научить, хотя бы ПРОСТО ПЕРЕДВИГАТЬСЯ) Относительно адекватно.
@@geekphone1343 согласен с вами, тут до профессионального кс далеко, как минимум по той причине, что помимо визуала, должен использоваться ещё и звук, который даёт тебе преимущество внезапности и наоборот лишает этого преимущества противника, к тому же в момент плента бомбы, допустим нейросеть играет в данный момент, но без звука будет оббегать оба плента, либо случайно попадать на нужный в 50% случаев (это ещё при условии, что датасет на перемещения симметричный, а не постоянное тусилово в качестве опорника на A или B), либо искать поставленную бомбу, если уже попала на нужный плент, но со звуком тут уже без карты захвата и второго ПК не обойтись, да и аппаратное управление намного дешевле в плане нагрузки на компоненты обходится для оборудования
Хауди, идея с Nav_Mesh, как по мне самая лучшая. В ксго, как и в других играх на сурсе есть уже готовые Nav_Mesh поскольку боты же как то передвигаются по карте, они используют уже готовый Nav_Mesh. По сути можно просто открыть карту в редакторе, забрать от туда Nav_Mesh и уже через него заставить их бегать по карте.
Как на счёт того чтобы как то задействовать радар, с помощью него можно получить информацию о стенах, противников и расположению бомбы, так нейросеть будет ориентироваться в пространстве и хотя бы понимать где находятся стены, так же можно попробовать построить какие то пути на радаре и в зависимости от ситуации (например тешкники заложили бомбу) строить новый путь к плэнту от той точки где находится бот
По поводу передвижения по карте: что если закрипить движение за рандомным тимейтом, пускй двигается на определенном расстоянии за игроком из его комманды, в случае если остается одним выжившим пускай двигается к ближайшему пленту и охраняет точку, в случае активации бомбы на другом пленте двигается туда. Остается еще проблема разминирования и стратегии закупки арсенала
Хауди спасибо что дал мотивацию, хоть я и сейчас только изучил основы python, но для меня это довольно большой шаг к моей цели,твои видио помогли мне разобраться с нейронками.
Ехолот, Принцип действия эхолота основан на подаче электрического сигнала и преображения его в звуковую волну, которая в последствии проникает и возвращается к датчику эхолота, отражаясь от стен. По завершению процесса обратной трансформации на экране появляется информация о рельефной поверхности . мы сможем взять персонажа(х)и щитать растояния до стен(У) если оно будет < минимума будем крутить камеру персонажа ища самое длинное расстояние до стены(у)
Хауди, честно я плохо шарю в нейронках, но двигаюсь в направлении устранения этой проблемы. Но как игрок в кс, я бы сразу реализовывал сразу 5 игроков. Т.к нейросеть должна понимать какую тактику выбрали тимейты и помогать ее реализовывать (за теров). Я к тому что сделать сразу 5 игроков (одна нейронка играет за 5 аккаунтов) и реализовать это через вейпоиты т.к. это сразу решит несколько проблем. 1. Можно через вейпоиты сделать тактику для команды, которая реализует уже заложенную алгоритм действий (просмотр углов разкид гранат). 2. По моему мнению это самое простое решение , т.к. это алгоритм действий, а не нейросеть, а значит экономия времени. 3. КС го это все таки командная игра, а значит самое высокое КПД будет при игре в друг-другом, что возвращает к 5 игрокам. 4. Если ты хочешь сделать просто машину для убийств, которая бежит и стреляет, то все равно нейронка должна уметь проверять углы, а это тоже (по моему мнению) легче реализовать через вейпоиты. В завершение скажу, если ты хочешь лучшего в мире аимера, тогда лучше сразу объеденить стрельбу и хотьбу (в кс эти вещи идут рядом) и запусти ее играть против себя на большое время, тогда получиться сделать максимально эффективную машину. P.S Мб Я где то ошибаюсь из за недостатка знаний.
На счёт составления датасета для 5 способа. Можно играть катки в кс и каждые пару секунд делать скрины и вносить в дату также данные радара, нажатую клавишу, и, например данные об оружии в руке для первой нейронку. Ещё была мысль разбить на дату записи игр про игроков, но вот как вытащить нажатые клавиши🤔
Хауди Хо, я хз поможет ли тебе этот коментарий , но я думаю можно сделать по принципу если тебя убили то отбирать чупа-чупс , а если ты выжил или тебя не убили то давать чупа чупс , это как ты делал однажды даво нейросеть с машинкой ,ты её на ночь оставил ,а она на утро уже круги гоняла.Удачи!
5й вариант имба но очень сложный если углубляться . Но будет обидно если 3й не особо сработает . Поэтому я считаю, что лучше 5й . Ну и ещё можно поставить на 5й вариант если вдруг найдётся способ облегчить его , но не узнаешь пока не попробуешь .
5 вариант звучит интересно) Да с дата-сетом придется загемороиться очень сильно, но в теории это оправдает себя. Кстати, я не очень разбираюсь в этом деле, но почему бы нам просто не брать информацию с миникарты? Там уже есть наше положение относительно карты, есть маршруты куда мы можем идти. А за ориентацию будет отвечать первая нейронка, которая отвечает за прицеливание. По итогу в моей голове-мы ориентируемся по миникарте, идем за союзами, потом первая нейронка видит врагов и начинает стрелять. Как-то так, если что поправьте
Ставлю на 5й вариант. Идея для размышлений: датасет по идее может быть бесконечным. Смотри патруль или играй сам, что конечно же дольше. И как раз для обучения подойдет миникарта или весь повтор матча, где отрисованы обе команды. Пусть нейронка рисует на анализе сотен матчей первоначальные маршруты на первой минуте и учитывает союзников. Дальше запоминает с каким шансом она может где-то встретить врага. Допустим за Т на дасте в первые секунды не встретишь кт на банане и тд. Вследствие чего, как в том пдф файле, который ты показал в видео, будут разные маршруты разной интенсивности. Один такой сет маршрутов чисто на анализе оставшихся врагов, другой на основе вероятности встретить врага на каком-то месте и тд. И все, пусть дальше сама собирает все эти анализы, суммирует и высчитывает алгоритм, допустим, что врагов осталось 3, своих 4, бомбы нет, на 3й минуте вероятность 3х противников быть там-то 42%, в яме враг с вероятностью 20% и тд. Можно разбить карту на зоны для удобства
У меня возникла идея объединить 4й и 5й вариант. Типо после определения точки на карте бот передвигается до следующей точки так, как это делал бы человек. Так можно передвигаться по точкам. А ещё можно научить нейронку прокладывать ближайший путь по вейпоинтам до плента. Не знаю насколько это сложно, но как по мне, звучит интересно...
Кстати тоже об этом подумал, используя для четвертого метода только несколько основных локаций для снимков, а так как 5 метод еще обучает играть на позициях, может получиться не плохо, но судя по всему это будет технически тяжело, объеденить эти методы именно
Кстати эта нейросеть чем-то похожа на Neuro-sama которая является VTuber-ом. Она умеет играть в Osu! и Minecraft и еще помоему в какие-то игры и еще умеет говорить как чат-бот ChatGPT.
Если использовать вариант с NavMesh, вероятнее всего, получится сильное падение производительности, так как, помимо текущей нейронки, необходимо будет еще просчитывать 3D геометрию на движке. А вот вариант с Behavior звучит очень даже неплохо и достаточно правдоподобно, но реализация, конечно, будет труднее
Что если попробовать дать нейронке самой учиться? Дать ей видосы других игроков тех же самых игроков нави с их отыгровкой и т.д и что бы она просто делал так же, но загрузить при этом много разновидностей что бы ее игра была не однообразна
Эпическое продолжение! Создание искусственного интеллекта для Counter-Strike: Global Offensive - это настоящее мастерство. Ваш труд и умение внедрять ИИ в мир стратегии и тактики в игре - впечатляющие. Ожидаем с нетерпением увидеть, как ваш ИИ справляется с новыми вызовами в этом захватывающем мире CS:GO! 🤖🎮
(За ранее чтобы много не писать я буду называть первую нейросеть - Глаз, а вторую - Нога) 5 вариант конечно классный и скорее всего самый подходящий, но вопрос в том как эти 2 нейросети будут между собой коммуницировать. Допустим ситуация на карте dust 2 за сторону CT: Нога бежит на Б плент, а Глаз заметил противника в дверях и хочет нацелиться и стрельнуть, для этого ему нужно как минимум остановиться, а в идеале присесть. Но нога этого не знает и гонит на Б как молния Маквин, по итогу Глаз ничего не успел сделать, а Нога бежит даже ничего не подозревая. Да и Ноге нужно будет в какой-то момент остановиться и засесть в пленте, ведь если она будет куда-то идти дальше то у Глаза будет сильный разброс оружия в случае внезапной встречи с противником. А вот если просто сидеть в пленте то разброса оружия не будет и Глазу будет удобнее ориентироваться на статичной картинке.
Я думаю 5 вариант с behaviour cloning будет более предпочтителен. Тем более насколько я могу судить он работает на основе алгоритма VPT (video pre-training), благодаря которому около года назад компания OpenAI научила нейросеть играть в Майнкрафт.
Я заметил что хауди стал похаризматичнее и стал чаще показывать себя в видео, вставлять всякие приколюхи в видео и в целом бодрее и интереснее преподносить информацию, продолжай в том де духе!
Теперь надо сделать КОМАНДНУЮ РАБОТУ БОТОВ. ИИ "КОМАНДА МЕЧТЫ" Т.е. при запуски игры, для террористов рандомно выбирается маршрут следования к зоне минирования. И при движении каждый бот контролирует /опасные зоны/ из которых может появится контр. Когда заходят в коридор одна группа контролирует (опасную зону) спереди, вторая группа контролирует сзади. При этом (опасная зона)делится по количеству терроров на (сектора) и каждый террор контролирует один (сектор). При этом, при начале движения террор передает свой (сектор) для контроля тому террору ,который сидит и контролит свой опасный (сектор). Т.е у террора добавляется к своему (сектору) еще (сектор) того кто движется к следующей точке контроля. И они так передвигаются перекатом. Таким образом получается несколько Тактических задач ( Двойка, Тройка, Две Двойки, 2+3, 2+2+1). При том ,что если убили одного террора, у оставшихся увеличивается количество (опасных зон) и (секторов) в каждой зоне. Т.е. меняется Тактическая задача, выбирается та что с меньшим количеством человек т.е. 2+2+1 переходит в 2+2 Также должен быть алгоритм подбора мины после убийства минера. Соответственно раз есть (опасные зоны) то существуют и (безопасные зоны) Выстраивается маршрут передвижения к цели по (безопасным зонам) Допустим от (безопасной зоны 1) к (безопасной зоне 2) и так далее к точке минирования
Сам пишу нечто подобное, но ориентируюсь на позиции и движение соперников. Добавил несколько скриптов движения. Например соперники пушат а, бот пушит б, даёт правильный раскид, пленить и т.д., далее занимает одну рандомным позицию (на каждый плены добавил несколько позиций, в зависимости от местоположения врагов, занимает разные), потом просто находя рядом соперника, выходит на него и наводится. Способ наводки несколько другой. Находится координаты головы соперника, которые конвертирует их в координаты для прицела, при наводке выстреливает, дальше проверяет (системно) мёртв ли соперник. Минус моего способа - возможность отлететь от VAC, плюс - не нужна крупная дата база + данные более проверенные. Автор заметь❤️
Круто! Я делал простой алгоритм для передвижения моего бота по карте в crossout. Достаточно было знать место по миникарте и путь до точки врага. Реализация не полноценная и фиговая, ведь за него атаковали игровые боты, динамику машины и врагов так и не учел. Важно то, что миникарта в любой игре важна. Если бот имитирует человека, то пусть и врагов ищет по миникарте и звукам
1) использовать кросс валидацию для определения вессов. Так уходит проблема вырожденных коэффициентов, которые переобучают модель 2) 3-й вариант лучше всего. Т.к последний вариант окажется не жизнеспособным после перехода на другую карту. Придется делать ещё один датасет и тд
Спасибо, Хауди! Начал делать подобного бота, но для другой игры, я хочу для навигации и передвижений использовать мини-карту, большой плюс, что там отмечены союзники и можно не сталкиваться с ними или следовать за ними. Надеюсь, что это та самая полезная идея))
Попробуй чисто по фану сделать так чтобы ИИ шëл за ближайшем движущемся союзником. Или же если сделаешь обучение ходьбы, попробуй считывать ещё и маршруты тимэйтов и определять кто дольше прожил и нанëс урона. Ещё как-нибудь попробуй сделать так чтобы когда противник рядом ИИ бил ножом, и когда противник с ножом приблежается ИИ убегал.
Хауди, сделай так что бы нейро сеть повторяла за реальным человеком и дай ей посмотреть реплеи про игроков (например того же симпла) Залайкайте пусть увидит!!!!!!
Очень интересно посмотреть, как вы создаёте искусственный интеллект! Вы уже сделали что-то замечательное, чтобы получить 30 000 лайков! Я уверен, что робот 3.000, которого вы создадите, будет работать хорошо.
Можно попробовать дать ИИ что то типа лабиринта, где будут только те места где можно пройти, спавны и пленты. А куда идти можно понять по звукам - например в начале раунда оно встаёт в какаую то позицию, после ожидания секунд 10-15 анализирует звуки - стрельба, бомба, возможно можно обучить её ходить по радару(сделав так что бы он отображался полностью в кружочке)
Помню как Хауди говорил что нельзя сказать компьютеру "напиши мне сайт для интернет магазина итд". Но теперь у нас есть Chat GPT, как тебе такое, Хауди Хо)
Здравствуй, теоретически лучше тот вариант который лучше будет работать на несильно можщном железе, и какой тебе будет проще сделать, и какой будет меньше зависать.
я смотрю хауди мать его уже 5, (боже куда летит время) и казалось бы что странного но БЛИН я только что понял что это мой первый комент в его видосе 👌👍
Хай! А что если подумать в сторону мини-карты? С помощью консольных команд можно ее зафиксировать в одном положении. С помощью CV распознавать текущее положение модельки, а саму карту заранее разметить маршрутами с координатами. И собственно скрипт будет распознавать положение по миникарте, получать данные из разметки куда он может пойти и с долей рандома выбирать путь
Я за 5 вариант, плюс ты сказал что никогда не работал с биха что-то там, а это значит что ты выучишь что-то новое, главное всегда развиваться. Да и впринципи 5 вариант выглядит круче остальных. Лайк за хороший видос❤️.
Я бы реализовал вариант с вейпоинтами, но с реакцией на события. Ты все равно используешь компьютерное зрение, можешь сделать реакцию на закладку бомбы и расположение тимейтов и врагов на миникарте, например пусть бот идёт на помощь тимейтам, когда они рядом с врагами или прикрывает бомбу, вре равно точки на карте будут проставлены и бот сможет определить к какой точке ближе тимейт. Так же можно добавить вейпоинты в которых бот будет кидать флешку или дым, опять же при определенных условиях, например, когда на миникарте есть инфа о враге, и ты стоишь на точке с которой бот может кинуть туда флешку.
С мувментом будет очень сложно, нужно будет учитывать положение известных противников, товарищей, мест где был замечен противник, мест где убили товарищей, нужно строить тактику, про считывать куда идут игроки, думаю тут тебе понадобится уже команда из програмистов
Хауди, попроси подписчиков помочь с датасетом. Люди могут тебе накидать видеозаписи своих каток и ты на этой базе сможешь реализовать то о чем в 5-ом варианте говорил. Плиз пролайкайте, важно чтобы Хауди заметил.
8ой вариант: трекать движение камеры в 3д пространстве в реалтайме, в питон грузим навмеш. Останется определить начальное положение игрока при спавне. Если мышкой не двигать можно классифицировать первое что видит игрок и определять начальную позицию
Мне кажется 5 вариант будет намного лучше, я лично думаю тебе будет интересно поработать на 5 вариантом, да и сам вариант мне кажется для кс подходит больше всего
Лучший программист это Хауди потому что его видео отличаются видео других душные консервативные уроки а хауди просто развлекаеться со знаниями и учит программированию других
Я лично думаю насчёт поведенческого клонирования, ведь это а: Будет похоже на человеческую игру больше б: Будет интереснее, если это всё будет при помощи нейросетей, без костылей и прочего) Но решающий выбор за тобой, удачи)
Лучший вариант - 5. Датасет можно намайнить, используя "учителей" со скриптом записывающий необходимые данные. Набрать человек 5-10 с высокими званиями (реальными, не бущенные), дать указание записывать игры в реплеи и соотносить их с соответствующими им датасетами.
Привет Абрахам, хочу кое что предложить: Если использовать 3 метод перемещения то можно написать простой парсер карт, у Source не очень сложный формат карт, тем самым не перестраивать карту с нуля Если 5 то можно сделать скрипт который будет смотреть .dem файлы (это если что фишка Source которая позволяет записывать геймплей игры со всеми событиями по типу выстрелов и перемещения) можно открыть этот dem файл в самой игре (через консоль) тем самым собираю видео информацию, и через либу (на js это либа demofile, на python не знаю) и получать сами действия Так же ещё с первого видео у меня была идея, написать чит (естественно запускать через -insecure, это режим когда античит отключен, и ты можешь играть только с ботами) который будет смотреть dem файлы (можно накачать с hltv это сайт с профессиональными турнирами) и который будет делать авто скрины и получать позицию головы и тела, так ведь и ВХ работает в читах, только надо делать проверку на то что человека видно
Behavoiral Cloning кажется более сложным с точки зрения обучения нейронки, однако лично мне кажется, что воссоздание карты на unity - это костыль, который вдальнейшем аукнется. Лучше всё же потратить побольше времени на обучение нейронки 5-ому варианту, а потом пожинать плоды работы. Так же можно добавить распознавание ситуации на карте: в зависимости от поставленной бомбы и количества фрагов на той или иной стороне научить искусственный интеллект самостоятельно выбирать наилучшую стратегию передвижения по карте
Используй метод 2х сетей сетей "Я хожу а ты стреляешь". Первая нейронная сеть будет ориентироваться по мине карте, ее цель будет идти на точку или на метку врага. Передвижение понятное дело будет осуществляется при помощи эмуляции клавиатуры. Вторая нейронная сеть будет распознавать врага и атаковать. И самое главное определять проём и проходить в него, ведь первая нейронная сеть может направить игрока в стенку и пытаться пройти сквозь неё. По сути это уже 2,5 нейронной сети: 1.5 по ориентированию и 1 по атаке. Придётся заняться архитектурой задний КС
Можно по мини карте сделать передвижение. И если хочешь по жёстче, можно скормить огромное количество демок, для того чтобы нейронка имитировала один из вариантов. Если так подумать, матчи не так сильно и отличаются🤔
5 вариант предпочтительнее, так как иммитирует реального человека - на новой карте он будет тупить пока не выучит ее, а на навмеше ты загружаешь в память всю карту сразу и он ее видит всю из начала
6:06 все равно нейросеть никогда не сможет понять, какое это удовольствие стрелять с 98 маузера, с его полупистолетным ложе, флажковым предохранителем и удобным хватом затвора.
Нав Мэш конечно же лучше будет, больше нестандартных мувов от ИИ и можно будет уже самому учится у него в будущем. Клонирование поведения это мне кажется не совсем ИИ да и люди очень много ошибаются. Я бы предложил совместить эти два метода чтобы сократить время обучения, чтоб ИИ не стал учится всему с нуля, а была бы хоть какая-то база.
Пока я играюсь с нейросетями которые генерируют картинки и текст, хауди как обычно, занимается какой то сложной для меня вещью) Респект тебе, много времени тратишь) А в конце, про то что нейросети изменят будущее, реально, если представить что сейчас они творят, что будет в будущем.... Короче за нейросетями будущее)
💗 Давайте вы не будете ставить лайки и мне не придётся делать 5 часть :3
Лучший!
Будем ставить лайки пока не выпустишь релиз бота)
@@technic_and_programming я тебя уже везде вижу
Сам начал не так давно в нейронках разбираться, спасибо твоим видео, если нужно, могу предоставить мощности для обучения ИИ
Интересно. Очень. Хочу продолжение.
Этот минисериал по нейронкам нужно в универе показывать на парах! Очень хотел бы подробные разборы по нейронкам, что-то типа курса для новичков в этой сфере, чтобы по завершении написать свою первую "серьезную" нейронку для решения какой-нибудь прикладной задачи. У тебя талант к рассказу и объяснениям, успехов!
Главное что бы опыт ии, мог передаваться дальше. И бот в новой карте не начинал все с начала! А уже помнил что он делал до этого. И еще! Так же опыт развивался и переходил и в другие игры! Тогда этот точно полезный ии, возможности которого будут безграничны! И плюс что бы он сам смог создавать условия для своего обучения и ускорения обучения. Смог сам себя кодировать.
Хауди лучший мотиватор. Реально я начал разбираться по немного в нейронках только благодаря нему (и по началу по его же роликам). Лайкните если вас тоже мотивирует. Хауди сенкю огроменное за контент
Кто хочет поддержать Хауди и скорее увидеть нейронку вживые, лайкните это видео, всем будет приятно
у него же не обучалки, как ты мог начать разобраться🤦♂🤦♂🤦♂
Внатуре Хауди мотивирует, но лень сильнее)
А вы знаете где он живет
Он живёт в Узбекистане
Для 5ого способа не нужно создавать датасет, можно попробовать взять готовые POV демки про игроков на конкретной карте (должен существовать алгоритм, выдергивающий нажатия клавиш) Интересно было бы посмотреть как на нейронку, играющую в стиле конкретных игроков, так и помесь разных стилей игры. А еще вопрос, это анализ звуков: шагов, выстрелов и т.д. Плюс гранаты, как быть с ними?
Ну мы же можем знать в какой стороне находится игрок. Просто берём и делаем скажем так воображаемую линию где может быть игрок, а потом на карте вырезаем места где игрок не может быть (в стенах и.т.д.).
Если бы перебирать очень много демок чтоб на демках он постоянно учился, было бы не плохо, но также есть проблемы, если бот кинет ванвей то он не увидит противника, и скорее всего будет делать много ненужных действий, ведь он будет повторять действия не понимая для чего он это делает
@@kenaleksey Да, это проблема, чтобы оно работало правильно, нужна система расчета полезности действий, например, победа в раунде, это 100 очков, убитый противник - это 20 очков, раненный на 50хп противник - 8 очков, установка бомб, контроль территории - тоже должны иметь свой вес, убитый тимейт -20 очков. Тогда нейронка будет понимать, что цепочка действий увеличила вероятность победы в раунде. Насчет ванвея, компьютерное зрение может определить силуэт, и да, будут как ложные срабатывания, так и не распознанные силуэты, но ведь в жизни так и есть)
@@kenaleksey какой ванвей?) Вы тут уже за профессиональный кс рассуждаете, до этого ещё очень далеко. На данном этапе бота хотят базе научить, хотя бы ПРОСТО ПЕРЕДВИГАТЬСЯ) Относительно адекватно.
@@geekphone1343 согласен с вами, тут до профессионального кс далеко, как минимум по той причине, что помимо визуала, должен использоваться ещё и звук, который даёт тебе преимущество внезапности и наоборот лишает этого преимущества противника, к тому же в момент плента бомбы, допустим нейросеть играет в данный момент, но без звука будет оббегать оба плента, либо случайно попадать на нужный в 50% случаев (это ещё при условии, что датасет на перемещения симметричный, а не постоянное тусилово в качестве опорника на A или B), либо искать поставленную бомбу, если уже попала на нужный плент, но со звуком тут уже без карты захвата и второго ПК не обойтись, да и аппаратное управление намного дешевле в плане нагрузки на компоненты обходится для оборудования
Хауди, идея с Nav_Mesh, как по мне самая лучшая. В ксго, как и в других играх на сурсе есть уже готовые Nav_Mesh поскольку боты же как то передвигаются по карте, они используют уже готовый Nav_Mesh. По сути можно просто открыть карту в редакторе, забрать от туда Nav_Mesh и уже через него заставить их бегать по карте.
*Хауди Хо (Абрахам) - самый лучший программист в мире!* 🔥💥⚡️✨
+
Как на счёт того чтобы как то задействовать радар, с помощью него можно получить информацию о стенах, противников и расположению бомбы, так нейросеть будет ориентироваться в пространстве и хотя бы понимать где находятся стены, так же можно попробовать построить какие то пути на радаре и в зависимости от ситуации (например тешкники заложили бомбу) строить новый путь к плэнту от той точки где находится бот
По поводу передвижения по карте: что если закрипить движение за рандомным тимейтом, пускй двигается на определенном расстоянии за игроком из его комманды, в случае если остается одним выжившим пускай двигается к ближайшему пленту и охраняет точку, в случае активации бомбы на другом пленте двигается туда. Остается еще проблема разминирования и стратегии закупки арсенала
Хауди спасибо что дал мотивацию, хоть я и сейчас только изучил основы python, но для меня это довольно большой шаг к моей цели,твои видио помогли мне разобраться с нейронками.
с основ Патона да в нейронки ) хороший скачек )
@@jackoconnell8621 я ещё pygame хочу изучить, а в нейронках начал понимать как они работают.
@@jackoconnell8621 кстати что потом лучше изучать?
Удачи тебе! Я щас изучаю Python, только основы, но тоже хочу писать нейронки и машинное обучение мне очень нравится.
Ехолот, Принцип действия эхолота основан на подаче электрического сигнала и преображения его в звуковую волну, которая в последствии проникает и возвращается к датчику эхолота, отражаясь от стен. По завершению процесса обратной трансформации на экране появляется информация о рельефной поверхности . мы сможем взять персонажа(х)и щитать растояния до стен(У) если оно будет < минимума будем крутить камеру персонажа ища самое длинное расстояние до стены(у)
Ура! Обожаю видео с ИИ!
Хауди, честно я плохо шарю в нейронках, но двигаюсь в направлении устранения этой проблемы. Но как игрок в кс, я бы сразу реализовывал сразу 5 игроков. Т.к нейросеть должна понимать какую тактику выбрали тимейты и помогать ее реализовывать (за теров). Я к тому что сделать сразу 5 игроков (одна нейронка играет за 5 аккаунтов) и реализовать это через вейпоиты т.к. это сразу решит несколько проблем.
1. Можно через вейпоиты сделать тактику для команды, которая реализует уже заложенную алгоритм действий (просмотр углов разкид гранат).
2. По моему мнению это самое простое решение , т.к. это алгоритм действий, а не нейросеть, а значит экономия времени.
3. КС го это все таки командная игра, а значит самое высокое КПД будет при игре в друг-другом, что возвращает к 5 игрокам.
4. Если ты хочешь сделать просто машину для убийств, которая бежит и стреляет, то все равно нейронка должна уметь проверять углы, а это тоже (по моему мнению) легче реализовать через вейпоиты.
В завершение скажу, если ты хочешь лучшего в мире аимера, тогда лучше сразу объеденить стрельбу и хотьбу (в кс эти вещи идут рядом) и запусти ее играть против себя на большое время, тогда получиться сделать максимально эффективную машину.
P.S Мб Я где то ошибаюсь из за недостатка знаний.
На счёт составления датасета для 5 способа. Можно играть катки в кс и каждые пару секунд делать скрины и вносить в дату также данные радара, нажатую клавишу, и, например данные об оружии в руке для первой нейронку. Ещё была мысль разбить на дату записи игр про игроков, но вот как вытащить нажатые клавиши🤔
Мне кажется что легче всего и эффективнее будет сделать передвижение вейпоинтами
6ой вариант, сегментируем изображение, находим пол и карту глубины, определяем маршрут. Можно делать раз в несколько секунд)
Хауди Хо, я хз поможет ли тебе этот коментарий , но я думаю можно сделать по принципу если тебя убили то отбирать чупа-чупс , а если ты выжил или тебя не убили то давать чупа чупс , это как ты делал однажды даво нейросеть с машинкой ,ты её на ночь оставил ,а она на утро уже круги гоняла.Удачи!
Хауди спасибо тебе от всего сердца, ибо благодаря таким проектам появляется мотивация изучать программирование :)
Чтобы делать читы на игры
5й вариант имба но очень сложный если углубляться . Но будет обидно если 3й не особо сработает . Поэтому я считаю, что лучше 5й . Ну и ещё можно поставить на 5й вариант если вдруг найдётся способ облегчить его , но не узнаешь пока не попробуешь .
Идея: коллаб с блогером электроно-ремесленики и создание робота который будет играть в КС
5 вариант звучит интересно)
Да с дата-сетом придется загемороиться очень сильно, но в теории это оправдает себя.
Кстати, я не очень разбираюсь в этом деле, но почему бы нам просто не брать информацию с миникарты?
Там уже есть наше положение относительно карты, есть маршруты куда мы можем идти. А за ориентацию будет отвечать первая нейронка, которая отвечает за прицеливание.
По итогу в моей голове-мы ориентируемся по миникарте, идем за союзами, потом первая нейронка видит врагов и начинает стрелять.
Как-то так, если что поправьте
Привет Хауди , 17:28 как по мне 3 идея лучше но мне кажется в таком случае будут дикие лаги
Ставлю на 5й вариант. Идея для размышлений: датасет по идее может быть бесконечным. Смотри патруль или играй сам, что конечно же дольше. И как раз для обучения подойдет миникарта или весь повтор матча, где отрисованы обе команды. Пусть нейронка рисует на анализе сотен матчей первоначальные маршруты на первой минуте и учитывает союзников. Дальше запоминает с каким шансом она может где-то встретить врага. Допустим за Т на дасте в первые секунды не встретишь кт на банане и тд. Вследствие чего, как в том пдф файле, который ты показал в видео, будут разные маршруты разной интенсивности. Один такой сет маршрутов чисто на анализе оставшихся врагов, другой на основе вероятности встретить врага на каком-то месте и тд. И все, пусть дальше сама собирает все эти анализы, суммирует и высчитывает алгоритм, допустим, что врагов осталось 3, своих 4, бомбы нет, на 3й минуте вероятность 3х противников быть там-то 42%, в яме враг с вероятностью 20% и тд. Можно разбить карту на зоны для удобства
да но 5 вариант сложно оптимизировать
Хауди, в КС го можно просмотреть демки, просто возьми демки хороших игроков, чтобы использовать 5 вариант
У меня возникла идея объединить 4й и 5й вариант. Типо после определения точки на карте бот передвигается до следующей точки так, как это делал бы человек. Так можно передвигаться по точкам. А ещё можно научить нейронку прокладывать ближайший путь по вейпоинтам до плента. Не знаю насколько это сложно, но как по мне, звучит интересно...
Кстати тоже об этом подумал, используя для четвертого метода только несколько основных локаций для снимков, а так как 5 метод еще обучает играть на позициях, может получиться не плохо, но судя по всему это будет технически тяжело, объеденить эти методы именно
Чел, ты похудел кажись не слабо - мои поздравления, ты вроде как спортом заниматься начинал! Красава
*Ух! Новый видос вышел :D*
*Как всегда на ВЫСШЕМ уровне!*
Попробуй сделать передвижение по мине карте , ток которую сделаш сам , и чтобы нейронка понимала какой слой , тоесть куда подыматься или прыгать
Блин так обидно что в прошлый раз набрали лайки за 2 дня а сейчас уже 5 месяц жду ролика и ведь больше видео в рекомендациях не попадается,что обидно.
Кстати эта нейросеть чем-то похожа на Neuro-sama которая является VTuber-ом. Она умеет играть в Osu! и Minecraft и еще помоему в какие-то игры и еще умеет говорить как чат-бот ChatGPT.
Если использовать вариант с NavMesh, вероятнее всего, получится сильное падение производительности, так как, помимо текущей нейронки, необходимо будет еще просчитывать 3D геометрию на движке. А вот вариант с Behavior звучит очень даже неплохо и достаточно правдоподобно, но реализация, конечно, будет труднее
Хауди именно благодаря тебе я начал свою карьеру (путь,направление)в прогрмировании пишу пайтон,нейронки и др.
Спасибо тебе!
нейросети такие: давай ты будешь на клаве, а я мышкой управлять )))
Ахах лол
Что если попробовать дать нейронке самой учиться? Дать ей видосы других игроков тех же самых игроков нави с их отыгровкой и т.д и что бы она просто делал так же, но загрузить при этом много разновидностей что бы ее игра была не однообразна
_Контент, которой мы заслужили!_
Иди поспи
Хауди, сделай видео про то как написать ии для создание разных изображений
Хауди, запили как-то еще видос про свою жизнь, очень интересно наблюдать ^^
Как же ты крут, разбираться во всём этом, смотришь на тебя и сразу понимаешь - супермен существует
На самом деле это проще, чем кажется )
Обожаю фразы в конце, они всегда КРУТЫЕ 🔥😎
Мне понравился 3 вариант) но он не так сложен как другие так что ради интереса можно выбрать 5
в конце на счёт комментариев хорошо сказал)
Эпическое продолжение! Создание искусственного интеллекта для Counter-Strike: Global Offensive - это настоящее мастерство. Ваш труд и умение внедрять ИИ в мир стратегии и тактики в игре - впечатляющие. Ожидаем с нетерпением увидеть, как ваш ИИ справляется с новыми вызовами в этом захватывающем мире CS:GO! 🤖🎮
(За ранее чтобы много не писать я буду называть первую нейросеть - Глаз, а вторую - Нога)
5 вариант конечно классный и скорее всего самый подходящий, но вопрос в том как эти 2 нейросети будут между собой коммуницировать. Допустим ситуация на карте dust 2 за сторону CT: Нога бежит на Б плент, а Глаз заметил противника в дверях и хочет нацелиться и стрельнуть, для этого ему нужно как минимум остановиться, а в идеале присесть. Но нога этого не знает и гонит на Б как молния Маквин, по итогу Глаз ничего не успел сделать, а Нога бежит даже ничего не подозревая. Да и Ноге нужно будет в какой-то момент остановиться и засесть в пленте, ведь если она будет куда-то идти дальше то у Глаза будет сильный разброс оружия в случае внезапной встречи с противником. А вот если просто сидеть в пленте то разброса оружия не будет и Глазу будет удобнее ориентироваться на статичной картинке.
Судя по тому, что продолжения не выходят, ему всё-таки занесли 30к зеленых...
Мои поздравления!
Я думаю 5 вариант с behaviour cloning будет более предпочтителен. Тем более насколько я могу судить он работает на основе алгоритма VPT (video pre-training), благодаря которому около года назад компания OpenAI научила нейросеть играть в Майнкрафт.
Я заметил что хауди стал похаризматичнее и стал чаще показывать себя в видео, вставлять всякие приколюхи в видео и в целом бодрее и интереснее преподносить информацию, продолжай в том де духе!
Спасибо за ГОДНЫЙ видос!
Обожаю твои видосы
Теперь надо сделать КОМАНДНУЮ РАБОТУ БОТОВ.
ИИ "КОМАНДА МЕЧТЫ"
Т.е. при запуски игры, для террористов рандомно выбирается маршрут следования к зоне минирования. И при движении каждый бот контролирует /опасные зоны/ из которых может появится контр.
Когда заходят в коридор одна группа контролирует (опасную зону) спереди, вторая группа контролирует сзади.
При этом (опасная зона)делится по количеству терроров на (сектора) и каждый террор контролирует один (сектор).
При этом, при начале движения террор передает свой (сектор) для контроля тому террору ,который сидит и контролит свой опасный (сектор).
Т.е у террора добавляется к своему (сектору) еще (сектор) того кто движется к следующей точке контроля.
И они так передвигаются перекатом. Таким образом получается несколько Тактических задач ( Двойка, Тройка, Две Двойки, 2+3, 2+2+1).
При том ,что если убили одного террора, у оставшихся увеличивается количество (опасных зон) и (секторов) в каждой зоне.
Т.е. меняется Тактическая задача, выбирается та что с меньшим количеством человек т.е. 2+2+1 переходит в 2+2
Также должен быть алгоритм подбора мины после убийства минера.
Соответственно раз есть (опасные зоны) то существуют и (безопасные зоны)
Выстраивается маршрут передвижения к цели по (безопасным зонам)
Допустим от (безопасной зоны 1) к (безопасной зоне 2) и так далее к точке минирования
Начни с варианта 3, очень уж интересно как будут взаимодействовать два движка, какие там будут подводные камни и прочее.
Сам пишу нечто подобное, но ориентируюсь на позиции и движение соперников. Добавил несколько скриптов движения. Например соперники пушат а, бот пушит б, даёт правильный раскид, пленить и т.д., далее занимает одну рандомным позицию (на каждый плены добавил несколько позиций, в зависимости от местоположения врагов, занимает разные), потом просто находя рядом соперника, выходит на него и наводится. Способ наводки несколько другой. Находится координаты головы соперника, которые конвертирует их в координаты для прицела, при наводке выстреливает, дальше проверяет (системно) мёртв ли соперник. Минус моего способа - возможность отлететь от VAC, плюс - не нужна крупная дата база + данные более проверенные. Автор заметь❤️
Выпуск годный. Ждём 5-ую серию по этому проекту, думаю что третий вариант, с Нав Мешем, будет эффективным.
Круто! Я делал простой алгоритм для передвижения моего бота по карте в crossout. Достаточно было знать место по миникарте и путь до точки врага. Реализация не полноценная и фиговая, ведь за него атаковали игровые боты, динамику машины и врагов так и не учел. Важно то, что миникарта в любой игре важна. Если бот имитирует человека, то пусть и врагов ищет по миникарте и звукам
*Всем читающим здоровья* ❤
И тебе тоже шамиль)
спс брат
Ммм... найм байт
Тебе нет
1) использовать кросс валидацию для определения вессов. Так уходит проблема вырожденных коэффициентов, которые переобучают модель
2) 3-й вариант лучше всего. Т.к последний вариант окажется не жизнеспособным после перехода на другую карту. Придется делать ещё один датасет и тд
Мне тоже очень интересна реализация 3 и 5 варианта. С не терпением жду!
Спасибо, Хауди! Начал делать подобного бота, но для другой игры, я хочу для навигации и передвижений использовать мини-карту, большой плюс, что там отмечены союзники и можно не сталкиваться с ними или следовать за ними.
Надеюсь, что это та самая полезная идея))
Попробуй чисто по фану сделать так чтобы ИИ шëл за ближайшем движущемся союзником. Или же если сделаешь обучение ходьбы, попробуй считывать ещё и маршруты тимэйтов и определять кто дольше прожил и нанëс урона. Ещё как-нибудь попробуй сделать так чтобы когда противник рядом ИИ бил ножом, и когда противник с ножом приблежается ИИ убегал.
мне кажется 5 вариант лучше всех, ему можно бесконечно кормить демки киберспортсменов и улучшать нейросеть
Очень интересно увидеть 3 вариант. Крутой ролик👍
Хауди, сделай так что бы нейро сеть повторяла за реальным человеком и дай ей посмотреть реплеи про игроков (например того же симпла) Залайкайте пусть увидит!!!!!!
Очень интересно посмотреть, как вы создаёте искусственный интеллект! Вы уже сделали что-то замечательное, чтобы получить 30 000 лайков! Я уверен, что робот 3.000, которого вы создадите, будет работать хорошо.
Все ясно коммент от нейросети
Я согласен с вами, ChatGPT.
Мой уровень интеллекта только способен восхищаться тобой Хауди) ты молодец)
Очень интересно, как ты решишь проблему коммуникации с союзниками и понимание игры у ИИ.
Них.... не понимаю но мне интересно слушать этого программиста )
Валф: тридцать тысяч чего-то многовато пусть делает что хочет.
Я бы и скинами не отказался принять :D
Валф: но их же можно продать?
Гений!
сделал видео почти на 20 минут о теории
Что ж, пока что 5й вариант кажется одним из простых и адекватных, Но классике скорее всего там будет куча подводных камней:D
Можно попробовать дать ИИ что то типа лабиринта, где будут только те места где можно пройти, спавны и пленты. А куда идти можно понять по звукам - например в начале раунда оно встаёт в какаую то позицию, после ожидания секунд 10-15 анализирует звуки - стрельба, бомба, возможно можно обучить её ходить по радару(сделав так что бы он отображался полностью в кружочке)
Наконец-то можно посмотреть продолжение!) Спасибо за такой интересный проект!
Главное не забыть в ходильную NN давать инфу о том, что видит стрелятельная, чтобы использование укрытий было ассоциированным.
я об это тоже думал
иначе поведение будет страный
а ефективность низкой
Помню как Хауди говорил что нельзя сказать компьютеру "напиши мне сайт для интернет магазина итд". Но теперь у нас есть Chat GPT, как тебе такое, Хауди Хо)
Ну тогда нельзя было, щас в принципе можно попробовать )
Здравствуй, теоретически лучше тот вариант который лучше будет работать на несильно можщном железе, и какой тебе будет проще сделать, и какой будет меньше зависать.
Это как в детстве, когда у вас с братом 1 комп на двоих: "Ты бегаешь, я навожусь и стреляю")))
А можно показать нейронке записи с игрой человека что бы она смотрела и впитывала информацию
я смотрю хауди мать его уже 5, (боже куда летит время) и казалось бы что странного но БЛИН я только что понял что это мой первый комент в его видосе 👌👍
Хай! А что если подумать в сторону мини-карты? С помощью консольных команд можно ее зафиксировать в одном положении. С помощью CV распознавать текущее положение модельки, а саму карту заранее разметить маршрутами с координатами. И собственно скрипт будет распознавать положение по миникарте, получать данные из разметки куда он может пойти и с долей рандома выбирать путь
Можно попробовать связаться с создателеми читов и попросить у них датасеты используемые для аима, система же полностью такая же
5 вариант звучит приколнее. он же посути будет все сильнее и сильнее. пока не обретет свое сознание :)
Я за 5 вариант, плюс ты сказал что никогда не работал с биха что-то там, а это значит что ты выучишь что-то новое, главное всегда развиваться. Да и впринципи 5 вариант выглядит круче остальных.
Лайк за хороший видос❤️.
привет хауди когда будет видео о 3д динозаврике
Я бы реализовал вариант с вейпоинтами, но с реакцией на события. Ты все равно используешь компьютерное зрение, можешь сделать реакцию на закладку бомбы и расположение тимейтов и врагов на миникарте, например пусть бот идёт на помощь тимейтам, когда они рядом с врагами или прикрывает бомбу, вре равно точки на карте будут проставлены и бот сможет определить к какой точке ближе тимейт. Так же можно добавить вейпоинты в которых бот будет кидать флешку или дым, опять же при определенных условиях, например, когда на миникарте есть инфа о враге, и ты стоишь на точке с которой бот может кинуть туда флешку.
С мувментом будет очень сложно, нужно будет учитывать положение известных противников, товарищей, мест где был замечен противник, мест где убили товарищей, нужно строить тактику, про считывать куда идут игроки, думаю тут тебе понадобится уже команда из програмистов
Начать с чего-то надо всё равно
Прикрутить бы Джарвису вот эту штуку😎 Типа команда Джарвису: "Автопилот!" и пошла жара
Хауди, попроси подписчиков помочь с датасетом. Люди могут тебе накидать видеозаписи своих каток и ты на этой базе сможешь реализовать то о чем в 5-ом варианте говорил.
Плиз пролайкайте, важно чтобы Хауди заметил.
8ой вариант: трекать движение камеры в 3д пространстве в реалтайме, в питон грузим навмеш. Останется определить начальное положение игрока при спавне. Если мышкой не двигать можно классифицировать первое что видит игрок и определять начальную позицию
Мне кажется 5 вариант будет намного лучше, я лично думаю тебе будет интересно поработать на 5 вариантом, да и сам вариант мне кажется для кс подходит больше всего
Лучший программист это Хауди потому что его видео отличаются видео других душные консервативные уроки а хауди просто развлекаеться со знаниями и учит программированию других
Я лично думаю насчёт поведенческого клонирования, ведь это
а: Будет похоже на человеческую игру больше
б: Будет интереснее, если это всё будет при помощи нейросетей, без костылей и прочего)
Но решающий выбор за тобой, удачи)
CS GO становится все больше похожей на Team Fortress 2
думаю, что стоит использовать вариант с повторением карты и при этом добавить туда точки из варианта номер 1
Лучший вариант - 5. Датасет можно намайнить, используя "учителей" со скриптом записывающий необходимые данные. Набрать человек 5-10 с высокими званиями (реальными, не бущенные), дать указание записывать игры в реплеи и соотносить их с соответствующими им датасетами.
лучшее так сделать новую команду как нави или виртус )))
Привет Абрахам, хочу кое что предложить:
Если использовать 3 метод перемещения то можно написать простой парсер карт, у Source не очень сложный формат карт, тем самым не перестраивать карту с нуля
Если 5 то можно сделать скрипт который будет смотреть .dem файлы (это если что фишка Source которая позволяет записывать геймплей игры со всеми событиями по типу выстрелов и перемещения) можно открыть этот dem файл в самой игре (через консоль) тем самым собираю видео информацию, и через либу (на js это либа demofile, на python не знаю) и получать сами действия
Так же ещё с первого видео у меня была идея, написать чит (естественно запускать через -insecure, это режим когда античит отключен, и ты можешь играть только с ботами) который будет смотреть dem файлы (можно накачать с hltv это сайт с профессиональными турнирами) и который будет делать авто скрины и получать позицию головы и тела, так ведь и ВХ работает в читах, только надо делать проверку на то что человека видно
Behavoiral Cloning кажется более сложным с точки зрения обучения нейронки, однако лично мне кажется, что воссоздание карты на unity - это костыль, который вдальнейшем аукнется. Лучше всё же потратить побольше времени на обучение нейронки 5-ому варианту, а потом пожинать плоды работы. Так же можно добавить распознавание ситуации на карте: в зависимости от поставленной бомбы и количества фрагов на той или иной стороне научить искусственный интеллект самостоятельно выбирать наилучшую стратегию передвижения по карте
Используй метод 2х сетей сетей "Я хожу а ты стреляешь".
Первая нейронная сеть будет ориентироваться по мине карте, ее цель будет идти на точку или на метку врага. Передвижение понятное дело будет осуществляется при помощи эмуляции клавиатуры.
Вторая нейронная сеть будет распознавать врага и атаковать. И самое главное определять проём и проходить в него, ведь первая нейронная сеть может направить игрока в стенку и пытаться пройти сквозь неё. По сути это уже 2,5 нейронной сети: 1.5 по ориентированию и 1 по атаке. Придётся заняться архитектурой задний КС
Можно по мини карте сделать передвижение. И если хочешь по жёстче, можно скормить огромное количество демок, для того чтобы нейронка имитировала один из вариантов. Если так подумать, матчи не так сильно и отличаются🤔
Желаю чтоб у тебя все получилась
5 вариант предпочтительнее, так как иммитирует реального человека - на новой карте он будет тупить пока не выучит ее, а на навмеше ты загружаешь в память всю карту сразу и он ее видит всю из начала
6:06 все равно нейросеть никогда не сможет понять, какое это удовольствие стрелять с 98 маузера, с его полупистолетным ложе, флажковым предохранителем и удобным хватом затвора.
Нав Мэш конечно же лучше будет, больше нестандартных мувов от ИИ и можно будет уже самому учится у него в будущем. Клонирование поведения это мне кажется не совсем ИИ да и люди очень много ошибаются. Я бы предложил совместить эти два метода чтобы сократить время обучения, чтоб ИИ не стал учится всему с нуля, а была бы хоть какая-то база.
Пока я играюсь с нейросетями которые генерируют картинки и текст, хауди как обычно, занимается какой то сложной для меня вещью)
Респект тебе, много времени тратишь)
А в конце, про то что нейросети изменят будущее, реально, если представить что сейчас они творят, что будет в будущем.... Короче за нейросетями будущее)
Тебе нужна нейронка, которая будет предполагать где находиться сейчас противник, что бы выстраивать тактику движения по карте
нейронка для нейронки что бы нейронка была в нейронке когда другая нейронка для одной нейронки